ON THE SPECTRUM OF ALGEBRAIC K-THEORY

BY S. M. GERSTEN
Communicated by H. Bass, October 4, 1971

Abstract

The groups $K_{i}(A)$ of Bass for $i<0$ are identified as homotopy groups of the spectrum of algebraic K-theory. The spectrum itself is identified. Applications to Laurent polynomials and to K-theory exact sequences are given.

Quillen has recently proposed a K-theory for unital rings [12], [13]. He associates to a ring A a space $B G 1(A)^{+}$whose homology is that of the group $G 1(A)$ and whose homotopy groups $\pi_{i} B G 1(A)^{+}$he defines as $K_{i}(A)$, $i \geqq 1$. The space $B G 1(A)^{+}$is known to be an H-space, and indeed an infinite loop space.

Hence one is motivated to define $K_{i}(A)$, for $i \in Z$, as $\pi_{i}(E(A))$ where $E(A)$ is the associated Ω-spectrum. This note describes $E(A)$ and identifies the groups $K_{i}(A), i<0$. In fact, we show that the groups $K_{i}(A)$ are exactly the groups $L^{-i} K_{0}(A)$ discussed in Bass' book [3, p. 664] for $i<0$.

Recall from the work of Karoubi and Villamayor [10] the cone $C A$ and suspension $S A$ of a ring A. An infinite matrix is called permutant if it is an infinite permutation matrix times a diagonal matrix of finite type. The diagonal matrix is of finite type if its diagonal entries are chosen from a finite subset of the ring. The ring $C A$ is the ring generated by permutant matrices. The cone $C A$ contains the two-sided ideal $\tilde{A}=\bigcup_{n} M_{n}(A)$ and the quotient ring is called the suspension of A. We can now state our main result.

Theorem A. The space $\Omega\left(B G 1(S A)^{+}\right)$has the homotopy type of $K_{0}(A) \times B G 1(A)^{+}$.

Corollary. For all $i \in Z$ we have $K_{i}(A)=K_{i+1}(S A)$.
Since Karoubi [9] has already identified $K_{0}\left(S^{i} A\right)$ with Bass' groups $K_{-i}(A)$, the Corollary above completes the identification of Bass' groups with the negative homotopy of the spectrum $E(A)$.

In proving Theorem A we must first analyze the cone construction.
Theorem B. The space $B G 1(C A)^{+}$is contractible.
This result generalizes work of Karoubi and Villamayor [11] who show that $K_{i}(C A)=0$ for $i \leqq 2$. To prove Theorem B we observe that it suffices

[^0]
[^0]: AMS 1970 subject classifications. Primary 18F25, 55B15, 16A54, 13D15, 55F50, 18G30, 55B20, 55D35.
 Key words and phrases. Algebraic K-theory, suspension and cone of a ring, Ω-spectrum, flasque category, locally free simplicial monoid, group completion functor, Laurent polynomials.

