LOWENHEIM-SKOLEM AND INTERPOLATION THEOREMS IN INFINITARY LANGUAGES¹

BY DAVID W. KUEKER

Communicated by F. W. Gehring, September 15, 1971

Let L be a first-order finitary predicate language with equality. For each pair of infinite cardinals κ and λ with $\kappa \geq \lambda$ we let $L_{\kappa\lambda}$ be the logic extending L which allows the conjunction (\wedge) and disjunction (\vee) of fewer than κ formulas and the simultaneous universal or existential quantification of fewer than λ variables. We set $L_{\infty\lambda} = \bigcup_{\kappa} L_{\kappa\lambda}$. The standard syntactical and semantical concepts are defined as usual (see [1], [2]). If θ is a sentence we write $\mathfrak{A} \models \theta$ to mean that θ is true on the model \mathfrak{A} . $\mathfrak{A} \equiv_{\kappa\lambda} \mathfrak{B}$ means that \mathfrak{A} and \mathfrak{B} have the same true sentences of $L_{\kappa\lambda}$. \mathfrak{A} , \mathfrak{B} , and \mathfrak{A}_i are always used for models for L, and we follow the convention that their universes are A, B, A_i respectively. The cardinality of a set X is denoted by |X|. If L' is some other language, then $L'_{\kappa\lambda}$ is the corresponding infinitary logic built on L'. For ease in stating many of our results we assume, except in the last section, that L has only countably many nonlogical symbols. A detailed presentation of these and related results is in preparation for publication elsewhere.

- 1. $L_{\infty\omega}$ and the Löwenheim-Skolem theorem. One form of the downward Löwenheim-Skolem theorem for sentences of $L_{\omega_1\omega}$ can be stated as follows:
- (A) If $\mathfrak{A} \models \theta$, then $\mathfrak{A}_0 \models \theta$ for some countable $\mathfrak{A}_0 \subseteq \mathfrak{A}$. The conclusion of (A) is quite weak; certainly the converse does not generally hold. One of our first goals is to define a notion of "almost all" such that the following biconditional holds for sentences of $L_{\omega_1\omega}$:
- (B) $\mathfrak{A} \models \theta$ iff $\mathfrak{A}_0 \models \theta$ for almost all countable $\mathfrak{A}_0 \subseteq \mathfrak{A}$. More importantly, we also generalize (B) to apply to sentences of $L_{\infty\omega}$ (for which (A) usually fails). To do this we must first index the countable submodels of a model and define countable approximations to any sentence of $L_{\infty\omega}$.

Let κ be an uncountable cardinal. We define a filter D over $\mathscr{P}_{\omega_1}(\kappa)$, the countable subsets of κ , as follows:

DEFINITION. $X \subseteq \mathscr{P}_{\omega_1}(\kappa)$ belongs to D iff X contains some X' such that (i) for every $s \in \mathscr{P}_{\omega_1}(\kappa)$ there is some $s' \in X'$ such that $s \subseteq s'$ and (ii) X' is closed under unions of countable chains.

LEMMA. D is a countably complete filter, and if $X_{\xi} \in D$ for all $\xi < \kappa$ then $\{s: s \in X_{\xi} \text{ for all } \xi \in s\} \in D.$

AMS 1970 subject classifications. Primary 02H10, 02B20, 02B25.

Research supported in part by the National Science Foundation under grant NSF GP