EXPONENTIATION OF CERTAIN QUADRATIC INEQUALITIES FOR SCHLICHT FUNCTIONS ${ }^{1}$

BY CARL H. FITZGERALD
Communicated by W. Fuchs, September 30, 1971

The Grunsky inequalities characterize the analytic functions that are univalent. Theorem 1 gives a new set of inequalities which appear to be the result of exponentiating the Grunsky inequalities for functions on the unit disc.

TheOrem 1. If $f(z)=z+a_{2} z^{2}+\cdots$ is a one-to-one, analytic function on $\{z:|z|<1\}$, then

$$
\begin{equation*}
\left|\sum_{v, \mu=1}^{n} \alpha_{v} \alpha_{\mu} \frac{f\left(z_{v}\right)}{z_{v}} \frac{f\left(z_{\mu}\right)}{z_{\mu}} \frac{z_{v}-z_{\mu}}{f\left(z_{v}\right)-f\left(z_{\mu}\right)}\right| \leqq \sum_{v, \mu=1}^{n} \alpha_{v} \bar{\alpha}_{\mu} \frac{1}{1-z_{v} \bar{z}_{\mu}} \tag{1}
\end{equation*}
$$

for all z_{v} in the unit disc and all complex numbers α_{v} for $n=1,2, \ldots$. For $z_{v}=z_{\mu}$ replace $\left(z_{v}-z_{\mu}\right) /\left(f\left(z_{v}\right)-f\left(z_{\mu}\right)\right)$ by $1 / f^{\prime}\left(z_{v}\right)$.

This theorem can be proved by an extension by Goluzin's method [2] of using Löwner's differential equation [4] to prove the Grunsky inequalities. Using (1), it is easy to find the bounds on the coefficients of the inverse function $f^{-1}(w)$ for all functions f as described in Theorem 1. (This problem was first solved by Löwner [4].)

By the same method, the following theorem can be proved.
Theorem 2. If $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ is a one-to-one, analytic function on $\{z:|z|<1\}$, then

$$
\begin{equation*}
\sum_{v, \mu=1}^{n} \alpha_{v} \bar{\alpha}_{\mu}\left|\frac{f\left(z_{v}\right)-f\left(z_{\mu}\right)}{z_{v}-z_{\mu}} \frac{1}{1-z_{v} \bar{z}_{\mu}}\right| \geqq\left|\sum_{v=1}^{n} \alpha_{v}\right| \frac{f\left(z_{v}\right)}{z_{v}}| |^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{v, \mu=1}^{n} \alpha_{v} \bar{\alpha}_{\mu}\left|\frac{f\left(z_{v}\right)-f\left(z_{\mu}\right)}{z_{v}-z_{\mu}} \frac{1}{1-z_{v} \bar{z}_{\mu}}\right|^{2} \geqq\left.\left.\left|\sum_{v=1}^{n} \alpha_{v}\right| \frac{f\left(z_{v}\right)}{z_{v}}\right|^{2}\right|^{2} \tag{3}
\end{equation*}
$$

for all z_{v} in the unit disc, for all complex numbers α_{v} and $n=1,2, \ldots$ For $z_{v}=z_{\mu}$ replace $\left(f\left(z_{v}\right)-f\left(z_{\mu}\right)\right) /\left(z_{v}-z_{\mu}\right)$ by $f^{\prime}\left(z_{v}\right)$.

From (2) it follows that if the coefficients of f are all real, then $a_{1}+a_{3}$ $+\cdots+a_{2 n-1} \geqq a_{n}^{2}$ and consequently $\left|a_{n}\right| \leqq n$ for $n=1,2, \ldots$. (That the

[^0]
[^0]: AMS 1970 subject classifications. Primary 30A36; Secondary 30A34.
 ${ }^{1}$ This work was supported in part by the United States Air Force grant number AFOSR-68-1514.

