THE CONSTRUCTION OF AN ASYMPTOTIC CENTER WITH A FIXED-POINT PROPERTY¹

BY MICHAEL EDELSTEIN

Communicated by W. Fuchs, August 16, 1971

ABSTRACT. Given a bounded sequence $\{u_n\colon n=1,2,\ldots\}$ of points in a closed convex subset C of a uniformly convex Banach space, c_m denotes the point in C with the property that among all closed balls centered at points of C and containing $\{u_m,u_{m+1},\ldots\}$ the one centered at c_m is of smallest radius. It is shown that the sequence $\{c_m\colon m=1,2,\ldots\}$ converges (strongly) to a point $c\in C$ called the asymptotic center of $\{u_n\}$ with respect to C. Further, for a class of mappings f of C into itself, which contains all nonexpansive mappings, f(c)=c whenever an $x\in C$ exists such that $f^n(x)=u_n,\ n=1,2,\ldots$

1. **Introduction.** Let C be a closed convex set in a uniformly convex Banach space X. (Recall that X is called uniformly convex if the modulus of convexity

$$\delta(\varepsilon) = \inf\{1 - \frac{1}{2}||x + y|| : ||x||, ||y|| \le 1, ||x - y|| \ge \varepsilon\}$$

is positive in its domain of definition $\{\varepsilon: 0 < \varepsilon \le 2\}$.) Given a bounded sequence $\{u_n: n = 1, 2, ...\}$ in the set C, define

(1)
$$r_m(y) = \sup\{\|u_k - y\| : k \ge m\} \ (y \in X).$$

It is well known, and easily proved, that a unique point $c_m \in C$ exists such that

(2)
$$r_m(c_m) = \inf\{r_m(y): y \in C\} = r_m.$$

Clearly $r_m \ge r_{m+1}$ and $r_m \ge 0$ for all m = 1, 2, ... so that $\{r_m : m = 1, 2, ...\}$ converges to $r = \inf\{r_m : m = 1, 2, ...\}$. We note that if r = 0 then, as can be readily verified, the sequence $\{u_n\}$ converges.

2. The asymptotic center.

DEFINITION. If $\{c_m\}$ converges then $c = \lim c_n$ is called the asymptotic center of $\{u_n\}$ (with respect to C).

THEOREM 1. With X, C and $\{u_n\}$ as above, the sequence $\{c_m\}$ converges. (Thus the asymptotic center c exists.)

PROOF. If r=0 then, as can be readily seen, $\{u_n\}$ is a Cauchy sequence and $\lim_{n\to\infty}u_n=\lim_{m\to\infty}c_m\,(=c)$. We may then assume that r>0. Suppose now, for a contradiction, that $\{c_m\}$ fails to converge. Then an $\varepsilon>0$ exists such that for any natural number N there are integers

AMS 1969 subject classifications. Primary 4785; Secondary 5485.

Key words and phrases. Asymptotic center, fixed-point theorem, nonexpansive mappings.

This research was supported by the National Research Council of Canada, Grant A-3999.