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ABSTRACT. Several types of Riemannian manifolds are characterized 
by the growth of area of displacements of hypersurfaces along normal 
geodesies. 

If H is a compact hypersurface with oriented normal bundle in a 
Riemannian manifold M and Hs is the (possibly singular) hypersurface of 
points at distance s along normal geodesies, then let AH(s) be the area of 
Hs. In [4], [3], [2], the functions AH were used to give characterizations 
respectively of the Euclidean plane, surfaces of constant curvature, mani­
folds of constant sectional curvature. A different proof, yielding further 
results, is outlined here. 

Say that a manifold M has finite order r if there is a linear differential 
equation of order r with constant coefficients which is satisfied by AH for 
every hypersurface H and r is the least such integer. If there is no such 
differential equation, say that M has infinite order. 

THEOREM 1. (a) ord M ^ dim M; 

(b) ord M = dim M o M has constant sectional curvature ; 
(c) ord M = 1 + dim M o M is locally isometric to a complex projec­

tive space other than CP1, or to its dual symmetric space; 
(d) if dim M = 2, ord M < oo <î=> M has constant curvature; 
(e) if M is symmetric, ord M < oo <=>M has rank 1 or is flat. 

The first step of the proof is to choose a point x in H, take an orthonormal 
frame El9..., En at x with En normal to H (where n = dim M) and parallel 
translate this frame along the normal geodesic through x. (A similar 
moving frame is also used in [1].) Let fs be the obvious map H -> Hs and 
Tl9..., Tn_ ! a moving frame along, and orthogonal to, the same geodesic, 
with 7](/s(x)) = dfs(T\(x)). It can be shown that if we define functions ttj 

(1 ^ i j ^ n - l ) by Tt = £> 0 £/ , then % = ^ikCy* where ckj = 
(R{En9 Ek)En,Ej}. The "if" portions of (b), (c), (d), and (e) now follow quite 
directly. 

LEMMA. If in a symmetric space M, the eigenvalues of the bilinear form 
<R(E, — )£, — > are the same for all unit vectors E, then M has rank 1 or is 
flat 
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