THE RANGE OF *m*-DISSIPATIVE SETS

BY CHI-LIN YEN1

Communicated by Felix Browder, August 2, 1971

Let X be a real Banach space and X^* its dual space. We shall give some sufficient conditions for an *m*-dissipative set A to have range R_A all of X or to be dense in X. The theorems which we shall prove are the following:

THEOREM 1. If A is a coercive, m-dissipative set on X, then $\overline{R}_A = X$.

THEOREM 2. In addition to the assumptions of Theorem 1, suppose that there is a compact operator c on X and a strictly increasing right-continuous function λ such that

$$\lambda(0) = 0 \quad and \quad \lambda(||x_1 - x_2||) \le ||y_1 - y_2 - (cx_1 - cx_2)||$$

whenever $[x_1, y_1], [x_2, y_2] \in A$. Then $R_A = X$.

THEOREM 3. Let X be a reflexive Banach space. If A is a coercive, demiclosed, m-dissipative set on X, then $R_A = X$.

DEFINITION. A mapping J of X into 2^{X^*} is said to be the *duality mapping* if $Jx = \{w \in X^*; ||w|| = ||x||, w(x) = ||x||^2\}$ for all $x \in X$.

It is easy to see that for each $x \in X$, Jx is a nonempty, closed, convex, bounded subset of X^* . Thus, for any $z \in X$, $x \in X$, there is $y \in Jx$, such that $y(z) = \inf\{w(z) : w \in Jx\}$ and we use $\langle z, x \rangle$ to denote y(z).

DEFINITION. A is said to be a dissipative set on X if A is a subset of $X \times X$ such that for $[x_1, y_1], [x_2, y_2]$ in $A, \langle y_1 - y_2, x_1 - x_2 \rangle \leq 0$.

T. Kato [5] showed that the above definition is equivalent to the following: for every pair $[x_1, y_1], [x_2, y_2]$ in A and $t \ge 0$,

$$||x_1 - x_2 - t(y_1 - y_2)|| \ge ||x_1 - x_2||.$$

Hence, if A is a dissipative set then $(1 - tA)^{-1}$ is a nonexpansive mapping on $R_{(1-tA)}$ into X for $t \ge 0$. We will say that A is *m*-dissipative if $R_{(1-tA)} = X$ for all $t \ge 0$. It is known that A is *m*-dissipative if and only if A is dissipative and $R_{(1-A)} = X$ (see S. Ôharu [6]).

DEFINITION. A dissipative set A is said to be *coercive* if $A^{-1}(B) = \{y \in X; Ay \cap B \neq \emptyset\}$ is bounded whenever B is a bounded subset of X.

DEFINITION. A is said to be *demiclosed* if A has the property that $x_n \rightarrow x_0$, $y_n \rightarrow y_0$, $[x_n, y_n] \in A$, for all n = 1, 2, ..., implies $[x_0, y_0] \in A$.

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 47B44.

Key words and phrases. m-dissipative set, coercive, demiclosed, range of dissipative set. ¹ The author is grateful to Professor G. F. Webb for suggesting this topic.