RIGIDITY THEOREMS FOR SURFACES IN EUCLIDEAN SPACE

BY BANG-YEN CHEN AND GERALD D. LUDDEN Communicated by Philip Hartman, August 2, 1971

Let M be a surface immersed in euclidean m-space E^m , and let ∇ and ∇' be the covariant differentiations of M and E^m respectively. Let u and v be two tangent vector fields on M. Then the second fundamental form h is given by

(1)
$$\nabla'_{\boldsymbol{u}}\boldsymbol{v} = \nabla_{\boldsymbol{u}}\boldsymbol{v} + \boldsymbol{h}(\boldsymbol{u},\boldsymbol{v}).$$

If $e_1, e_2, e_3, \ldots, e_m$ is a local field of orthonormal frame such that e_1, e_2 are tangent to M and e_3, \ldots, e_m are normal to M, then the mean curvature vector **H** is given by

(2)
$$\boldsymbol{H} = \frac{1}{2} \sum_{i=1}^{2} \boldsymbol{h}(\boldsymbol{e}_i, \boldsymbol{e}_i).$$

For a normal vector field η and a tangent vector field u on M, let $\nabla_{u}^{*}\eta$ denote the normal component of $\nabla'_{\mu}\eta$. Then ∇^* defines a connection in the normal bundle of M in E^m . A normal vector field η is said to be parallel in the normal bundle if $\nabla^* \eta = 0$. Let h_{ij}^r , $i, j = 1, 2, r = 3, \dots, m$, be the coefficients of the second fundamental form h. Then the Gauss curvature K and the normal curvature K_N are given by

(3)
$$K = \sum_{r=3}^{m} (h_{11}^r h_{22}^r - h_{12}^r h_{12}^r),$$

(4)
$$K_N = \sum_{r,s=3}^m \left[\sum_{k=1}^2 (h_{1k}^r h_{2k}^s - h_{2k}^r h_{1k}^s) \right]^2,$$

respectively. The mean curvature vector H, the Gauss curvature K, and the normal curvature K_N play important roles, in differential geometry, for surfaces in euclidean space.

Let \langle , \rangle denote the scalar product of E^m . If the mean curvature vector **H** is nowhere zero and there exists a function f on M such that $\langle h(u, v), H \rangle$ $= f \langle u, v \rangle$ for all tangent vector fields u, v on M, then M is called a pseudoumbilical surface of E^m .

AMS 1970 subject classifications. Primary 53A05, 53B25, 53C40. Key words and phrases. Mean curvature vector, parallel in the normal bundle, Gauss curvature, normal curvature, circular cylinder, Veronese surface.