SOME ORDERS OF INFINITE LATTICE TYPE

BY KLAUS W. ROGGENKAMP

Communicated by Hyman Bass, May 3, 1971

Let K be a p-adic number field with ring of integers R, and let Λ be an R-order in the finite-dimensional semisimple K-algebra A. By $n(\Lambda)$ we denote the number of nonisomorphic indecomposable left Λ -lattices. In case A is commutative, an indecomposable order Λ can only be of finite lattice type, if A decomposes into at most three simple modules (cf. Dade [1]). Our main result is, that this also holds in the noncommutative case.

THEOREM I. Let e be a primitive idempotent of Λ (i.e., Λ e is a principal indecomposable Λ -module). If Ae is the direct sum of t simple A-modules with $t \ge 4$, then $n(\Lambda) = \infty$.

With the help of Lemma 1, the proof of Theorem I can be reduced to completely primary totally ramified R-orders Λ ; i.e., Λ is completely primary and $\Lambda/J(\Lambda) \simeq R/J(R)$, where J(S) denotes the Jacobson radical of S.

LEMMA 1. Let e be an idempotent of Λ and put $\Omega = \operatorname{End}_{\Lambda}(\Lambda e)$. Then $n(\Omega) = \infty$ implies $n(\Lambda) = \infty$.

Let $\mathfrak C$ denote the class of completely primary totally ramified R-orders in A, where A is the direct sum of t simple A-modules, $t \ge 4$. $\mathfrak C$ is a partially ordered set with maximal elements and it suffices to show that for a maximal element $\Lambda \subset \mathfrak C$ we have $n(\Lambda) = \infty$. The structure of the maximal elements in $\mathfrak C$ is classified by

LEMMA 2. Let Λ be a maximal element in \mathfrak{C} , then $\Lambda = R + J(\Gamma)$, where Γ is a hereditary R-order in A.

We put $\mathfrak{k}=R/J(R)=\Lambda/J(\Gamma)$; then $\Gamma/J(\Gamma)$ is a ring which is also a \mathfrak{k} -module, and the hypotheses on A imply that $\dim_{\mathfrak{k}}(\Gamma/J(\Gamma)) \geq 4$.

Now a technique of Dade [1] (Drozd-Roiter [2]) allows us to conclude $n(R+J(\Gamma)) = \infty$.

AMS 1970 subject classifications. Primary 16A18, 16A66; Secondary 16A48. Key words and phrases. Orders, finite lattice type, completely primary orders, number of indecomposable lattices.