SOME ORDERS OF INFINITE LATTICE TYPE

BY KLAUS W. ROGGENKAMP
Communicated by Hyman Bass, May 3, 1971

Let K be a p-adic number field with ring of integers R, and let Λ be an R-order in the finite-dimensional semisimple K-algebra A. By $n(\Lambda)$ we denote the number of nonisomorphic indecomposable left Λ-lattices. In case A is commutative, an indecomposable order Λ can only be of finite lattice type, if A decomposes into at most three simple modules (cf. Dade [1]). Our main result is, that this also holds in the noncommutative case.

Theorem I. Let e be a primitive idempotent of Λ (i.e., Λe is a principal indecomposable Λ-module). If A e is the direct sum of t simple A-modules with $t \geqq 4$, then $n(\Lambda)=\infty$.

With the help of Lemma 1, the proof of Theorem I can be reduced to completely primary totally ramified R-orders Λ; i.e., Λ is completely primary and $\Lambda / J(\Lambda) \simeq R / J(R)$, where $J(S)$ denotes the Jacobson radical of S.

Lemma 1. Let e be an idempotent of Λ and put $\Omega=\operatorname{End}_{\Delta}(\Lambda e)$. Then $n(\Omega)=\infty$ implies $n(\Lambda)=\infty$.

Let (5) denote the class of completely primary totally ramified R-orders in A, where A is the direct sum of t simple A-modules, $t \geqq 4$. $\mathfrak{C}^{(C}$ is a partially ordered set with maximal elements and it suffices to show that for a maximal element $\Lambda \in \mathscr{C}$ we have $n(\Lambda)=\infty$. The structure of the maximal elements in \mathfrak{C} is classified by

Lemma 2. Let Λ be a maximal element in $\mathfrak{(}$, then $\Lambda=R+J(\Gamma)$, where Γ is a hereditary R-order in A.

We put $\mathfrak{f}=R / J(R)=\Lambda / J(\Gamma)$; then $\Gamma / J(\Gamma)$ is a ring which is also a \mathfrak{f}-module, and the hypotheses on A imply that $\operatorname{dim}_{\mathfrak{t}}(\Gamma / J(\Gamma)) \geqq 4$.

Now a technique of Dade [1] (Drozd-Roiter [2]) allows us to conclude $n(R+J(\Gamma))=\infty$.

[^0]
[^0]: AMS 1970 subject classifications. Primary 16A18, 16A66; Secondary 16A48.
 Key words and phrases. Orders, finite lattice type, completely primary orders, number of indecomposable lattices.

