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In this note, we announce some results in the geometric theory of 
several complex variables. For the first theorem, recall the theorem of 
Cartan-Hadamard : if M is a Riemannian manifold with nonpositive 
Riemannian curvature, complete and simply connected, then it is 
diffeomorphic to Euclidean space. When the metric is actually 
Kàhler, the following result gives additional information: 

THEOREM 1. Let M be a complete simply connected Kàhler manifold 
with nonpositive Riemannian curvature. Then 

(i) M is a Stein manifold. 
(ii) If p denotes the distance function from a fixed point 0 £ ¥ , then 

log p is plurisubharmonic and p2 and log(l +P2) are both C°° and strictly 
plurisubharmonic. In fact 

ddcp2 ^ 4co, ddc log(l + p2) à 4w/(l + p2)2 

where dc = ( — l)112 {d" — d') and o) is the Kàhler form of M. 
(iii) If Riemannian curvature S — c2 < 0, then ddcp2 ^ (2 + 2cp coth cp)co, 

ddc\og (l+p2)^ao), where coth denotes the hyperbolic cotangent and 
a = min {2, c coth c — l } > 0 . 

(iv) If — d2^Riemannian curvature ^ 0 , then 

ddcp2 ^ (Apd coth pd + 2)CÖ, 

dd* log (1 + p2) g (1/(1 + p2))(4pd coth pd + 2)«. 

Part (i) is a known result. See [4]. 
For the next theorem, we recall that it is generally conceded that 

no holomorphic function on Cn can be in LP1 p ^ <*>. In transferring 
this theorem to Kàhler manifolds, it is obviously necessary to forego 
the case of p = <x>. 

THEOREM 2. Let M be an n-dimensional complete simply connected 
Kàhler manifold with nonpositive Riemannian curvature. Then 
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