THE INTERPOLATORY BACKGROUND OF THE EULERMACLAURIN QUADRATURE FORMULA

BY I. J. SCHOENBERG AND A. SHARMA

Communicated by Fred Brauer, May 14, 1971
In [4] the first named author discussed the explicit solutions of the cubic spline interpolation problems. We are now concerned with quintic spline functions. Let $S_{5}[0, n]$ denote the class of quintic spline functions $S(x)$ defined in the interval $[0, n]$ and having the points $0,1, \cdots, n-1$ as knots. This means that the restriction of $S(x)$ to the interval $(\nu, \nu+1)(\nu=0, \cdots, n-1)$ is a fifth degree polynomial, and that $S(x) \in C^{4}[0, n]$. With these functions we can solve uniquely the following three types of interpolation problems.

1. Natural quintic spline interpolation. We are required to find $S(x) \in S_{5}[0, n]$ such as to satisfy the conditions

$$
\begin{align*}
S(\nu) & =f(\nu) \quad(\nu=0, \cdots, n) \tag{1}\\
S^{\prime \prime \prime}(0) & =S^{(4)}(0)=S^{\prime \prime \prime}(n)=S^{(4)}(n)=0 \tag{2}
\end{align*}
$$

2. Complete quintic spline interpolation. We are to find $S(x)$ $\in S_{5}[0, n]$ so as to satisfy the conditions

$$
\begin{gather*}
S(\nu)=f(\nu) \quad(\nu=0, \cdots, n) \tag{3}\\
S^{\prime}(0)=f^{\prime}(0), \quad S^{\prime \prime}(0)=f^{\prime \prime}(0), \quad S^{\prime}(n)=f^{\prime}(n), \quad S^{\prime \prime}(n)=f^{\prime \prime}(n)
\end{gather*}
$$

3. The interpolation of Euler-Maclaurin data. Here we seek $S(x) \in S_{5}[0, n]$ such that

$$
\begin{gather*}
S(\nu)=f(\nu) \quad(\nu=0, \cdots, n) \tag{5}\\
S^{\prime}(0)=f^{\prime}(0), \quad S^{\prime \prime \prime}(0)=f^{\prime \prime \prime}(0), \quad S^{\prime}(n)=f^{\prime}(n), \quad S^{\prime \prime \prime}(n)=f^{\prime \prime \prime}(n)
\end{gather*}
$$

In the present note we propose to do for quintic spline interpolation what was done in [4] for cubic interpolation. Also the method used is similar; in the present case we derive our results from the 5 th degree case of cardinal spline interpolation discussed in [2]. We describe here the results concerning the third problem (5) and (6).

The foundation of our discussion is the quintic B-spline

