LOCALIZATION AND COMPLETION IN HOMOTOPY THEORY ${ }^{1}$

BY A. K. BOUSFIELD AND D. M. KAN

Communicated by E. H. Brown, June 1, 1971

1. Introduction. For each space X (i.e. simplicial set with only one vertex) and solid ring R (i.e. commutative ring with 1 , for which the multiplication map $R \otimes R \rightarrow R$ is an isomorphism [3]) we shall construct, in a functorial manner, a space $X_{R}^{\hat{}}$, the R-completion of X, and discuss some of its properties. The proofs will be given elsewhere.

If $R \subset Q$ (i.e. R is a subring of the rationals) and $\pi_{1} X=0$, then $\pi_{*} X_{R}^{\hat{R}} \approx \pi_{*} X \otimes R$ and $X_{R}^{\hat{R}}$ is a localization in the sense of [7], [9] and [11].

If $R=Z_{p}$ (the integers modulo a prime p), $\pi_{1} X=0$ and $\pi_{n} X$ is finitely generated for all n, then $\pi_{*} X_{R}^{\hat{R}}$ is the usual p-profinite completion of $\pi_{*} X$ and $X_{R}^{\hat{R}}$ is a p-completion in the sense of [8] and [11].

This note is, in some sense, a continuation of [2]. However, our present construction is (although homotopically equivalent to) completely different from the one of [2] and has the advantage that it can easily be generalized to a functorial notion of fibre-wise R-completion. In [2] we used cosimplicial methods, while here the basic tool is that of
2. The R-completion of a group. To define this notion we call a group N an R-nilpotent group if N has a central series

$$
1=N_{k} \subset \cdots \subset N_{j} \subset \cdots \subset N_{0}=N
$$

such that for each j the quotient group N_{j} / N_{j+1} admits an R-module structure. The R-completion of a group G then is the group $G_{R}^{\hat{R}}$ obtained by combining Artin-Mazur [1, §3] with an inverse limit, i.e. by taking the inverse limit [1, p. 147] of the functor which assigns to every homomorphism $G \rightarrow N$, where N is R-nilpotent, the group N, and to every commutative triangle

[^0]
[^0]: AMS 1969 subject classifications. Primary 5540.
 Key words and phases. Relative R-completion of groups, R-completion of spaces, fibre-wise R-completion, R-nilpotent groups, R-nilpotent spaces.
 ${ }^{1}$ This research was supported by the National Science Foundation.
 Copyright © American Mathematical Society 1971

