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1. Introduction. For each space X (i.e. simplicial set with only one
vertex) and solid ring R (i.e. commutative ring with 1, for which the
multiplication map R® R—R is an isomorphism [3]) we shall con-
struct, in a functorial manner, a space Xz, the R-completion of X, and
discuss some of its properties. The proofs will be given elsewhere.

If RCQ (i.e. R is a subring of the rationals) and mX =0, then
7{*X 2 ~mxX ®R and Xp, is a localization in the sense of [7], [9] and

11].

If R=Z, (the integers modulo a prime p), mX =0 and 7,X is
finitely generated for all #, then m+Xy is the usual p-profinite comple-
tion of mX and Xp, is a p-completion in the sense of [8] and [11].

This note is, in some sense, a continuation of [2]. However, our
present construction is (although hkomotopically equivalent to) com-
pletely different from the one of [2] and has the advantage that it can
easily be generalized to a functorial notion of fibre-wise R-completion.
In [2] we used cosimplicial methods, while here the basic tool is that
of

2. The R-completion of a group. To define this notion we call a
group N an R-wnilpotent group if N has a central series

1=N:C-- - CN;C- - CNo=N

such that for each j the quotient group N;/N;;1 admits an R-module
structure. The R-completion of a group G then is the group Gg ob-
tained by combining Artin-Mazur [1, §3] with an inverse limit, i.e.
by taking the inverse limit [1, p. 147] of the functor which assigns to
every homomorphism G—N, where N is R-nilpotent, the group N,
and to every commutative triangle
/N
G |
\N’
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