ON THE EXISTENCE OF A CONTROL MEASURE FOR STRONGLY BOUNDED VECTOR MEASURES

BY JAMES K. BROOKS1

Communicated by Bertram Yood, April 29, 1971

In this note we extend a theorem of Bartle, Dunford, and Schwartz [1] which states that for every countably additive measure defined on a σ -algebra there exists a positive "control measure" ν such that $\nu(E) \to 0$ if and only if $\|\mu\|(E) \to 0$, where $\|\mu\|$ is the semivariation of μ . In this paper, μ , which is defined on a ring Σ , is assumed to be finitely additive and strongly bounded (s-bounded) [8] (that is $\mu(E_i) \to 0$ whenever $\{E_i\}$ is a disjoint sequence of sets). The existing decomposition and extension theorems for vector measures can now be easily deduced by using the control measure. These applications will be presented in [2].

 \mathfrak{X} is a Banach space over the reals (the complex case is treated in a similar fashion); S^* is the unit sphere in the conjugate space of \mathfrak{X} . $\sigma(\mathfrak{E})$ denotes the σ -algebra generated by the class of sets \mathfrak{E} . A δ -ring is a ring of sets closed under countable intersections.

THEOREM 1. Let Σ be a ring of subsets of a set S. $\mu: \Sigma \to \mathfrak{X}$ is finitely additive and s-bounded if and only if there exists a positive finitely additive bounded set function ν defined on Σ such that

$$\lim_{\nu(E)\to 0}\mu(E)=0$$

and

$$\nu(E) \leq \sup\{\|\mu(F)\| : F \subseteq E, F \in \Sigma\}, \quad E \in \Sigma.$$

Sketch of the proof. First assume Σ is an algebra. Let T be the isometric isomorphism of $ba(S, \Sigma)$ onto $ba(S_1, \Sigma_1)$, where Σ_1 is the Stone algebra of all open-closed subsets of the compact totally disconnected Hausdorff space S_1 [4, IV.9]. U is the isometric isomorphism between $ba(S_1, \Sigma_1)$ and $ca(S_1, \Sigma_2)$, where $\Sigma_2 = \sigma(\Sigma_1)$.

We prove that $\{(UT)(x^*\mu): x^* \in S^*\}$ is uniformly countably additive on Σ_2 . It suffices to show that $\{(UT)[(x^*\mu)^+]: x^* \in S^*\}$ is uniformly countably additive, where $x^*\mu = (x^*\mu)^+ - (x^*\mu)^-$ is the Jordan

AMS 1970 subject classifications. Primary 22A45.

Key words and phrases. Stone algebra, unconditional convergence, weak convergence, weakly compact.

¹ This research was supported in partly by NSF Grant GP 28617.