BESSEL POTENTIALS. INCLUSION RELATIONS AMONG CLASSES OF EXCEPTIONAL SETS

BY DAVID R. ADAMS AND NORMAN G. MEYERS

Communicated by James Serrin, June 17, 1971

1. Let $g_{\alpha}=g_{\alpha}(x)$ be the Bessel kernel of order $\alpha, 0<\alpha<+\infty$, on $R^{n} ; g_{\alpha}$ is the Fourier transform of $(2 \pi)^{-n / 2}\left(1+|\zeta|^{2}\right)^{-\alpha / 2}$. For $1<p<\infty$, we define a capacity $B_{\alpha, p}$ (referred to as Bessel capacity) : for $A \subset R^{n}$,

$$
B(A)=B_{\alpha, p}(A)=\inf _{f} \int f(x)^{p} d x
$$

the infimum being taken over all functions f in $L_{p}^{+}=L_{p}^{+}\left(R^{n}\right)$ —positive functions in the Lebesgue class-such that $g_{\alpha} * f(x) \geqq 1$ for all $x \in A$. The capacities $B_{\alpha, p}$ have been studied extensively in [4]. It is an easy consequence of the definition of $B_{\alpha, p}$ that: $B_{\alpha, p}(A)=0$ if and only if there is an $f \in L_{p}^{+}$such that $g_{\alpha} * f(x)=+\infty$ on A.

Variants of the Bessel capacities occur for instance in [1], [3], [5].
Our purpose here is to announce results on the relations between the B 's for various pairs (α, p). We say that the Bessel capacity B is stronger than the Bessel capacity B^{\prime} (written $B^{\prime} \preceq B$) if $B(A)=0$ always implies $B^{\prime}(A)=0$. If in addition, there is a set A such that $B(A)>0$ but $B^{\prime}(A)=0$ we say B is strictly stronger than $B^{\prime}\left(B^{\prime}<B\right)$. These are the relations between B and B^{\prime}. If both $B^{\prime} \preceq B$ and $B \preceq B^{\prime}$ hold, we say B is equivalent to $B^{\prime}\left(B \sim B^{\prime}\right)$. In addition to the relations among the B 's, we also give some results concerning relations between Bessel capacities, Hausdorff measures, and classical capacities (C_{k} below). These classical capacities can be viewed as a special case of general L_{p}-capacities of [4] when $p=1$ or $p=2$.

Notation. wei $B=$ weight of $B_{\alpha, p}=\alpha p$; ord $B=$ order of $B_{\alpha, p}=\alpha$; ind $B=$ index of $B_{\alpha, p}=(\alpha, p)$. By $(\alpha, p) \prec(\beta, q)$ we shall mean either $\alpha p<\beta q$, or $\alpha p=\beta q$ and $\alpha<\beta$.
2. The principal result is

Theorem 1. If B and B^{\prime} are two Bessel capacities,
(i) $B^{\prime} \prec B$ if and only if ind $B^{\prime}<$ ind B and wei $B^{\prime} \leqq n$.
(ii) $B^{\prime} \sim B$ if and only if ind $B^{\prime}=\operatorname{ind} B$ or wei B and wei $B^{\prime}>n$.

