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The main result is that every Hubert space admits continuously 
differentiable partitions of unity. We sketch a proof of the key propo­
sition. Details will appear in [4]. 

Much more is known for separable Banach spaces. R. Bonic and 
J. Frampton [l ] showed that if there are any nontrivial Ck (i.e., k con­
tinuous Fréchet derivatives) on E, a separable Banach space, then E 
admits C* partitions of unity. Thus separable Hilbert space, Zn, for 
n an even integer, and c0 admit C00 partitions of unity. C°° partitions 
of unity on separable Z2 were first constructed by James Eells; a 
proof appears in [2]. 

Let Rn be w-dimensional Euclidean space. Let 

CÎ.jr = {ƒ I ƒ G C\R", R), sup (\\D%) - Dkf(y)\\/\\x - y\\) £ M\ . 

If A is a closed subset of Rn, call ƒ a C\tM A -selecting function if 
ƒGCj> f 0£ƒ(*) g 1, Cj> (*) = liix€A and ƒ(*) = 0 if d(x, A) è 1. By 
smoothing out sup(0, 1— d(x, A)) we can always find a C\tM A-
selecting function provided M is large enough. For & = 0, f(x) 
= sup(0, 1— d(x, A)) has smallest M namely 1. For k = l and 2, we 
have the following: 

THEOREM 1. Let A = {x\xi^0} \\x\\ g l , i = l , • • • , n\. Theniffisa 
C\fM A-selecting function, n>M2+36MA. 

COROLLARY 1. The Whitney Extension Theorem fails f or separable 
Hilbert space. 

THEOREM 2. If A is a closed subset of H, any Hilbert space, then there 
exists a Cj,4 A-selecting function, j', and if gE.C{té(H, i?), g(x) = lforx 
in A and 0Sg(x) S1, then f (x) ^g(x). 

The key to the proof of Theorem 2 is 

PROPOSITION 1. Theorem 2 is true if H is finite dimensional and 
A = F a finite subset. 
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