ON THE CONVERGENCE OF MULTIPLE FOURIER SERIES

BY CHARLES FEFFERMAN

Communicated by M. H. Protter, January 11, 1971
We continue from [2].
Theorem. Let P be an open polygonal region in R^{2}, containing the origin. Set $\lambda P=\{(\lambda x, \lambda y) \mid(x, y) \in P\}$ for $\lambda>0$. Then for

$$
f \sim \sum_{m, n=-\infty}^{\infty} a_{m n} \exp [i(m x+n y)]
$$

in $L^{2}([0,2 \pi] \times[0,2 \pi])$, we have

$$
f(x, y)=\lim _{\lambda \rightarrow \infty} \quad \sum_{(m, n) \in \lambda P} a_{m n} \exp [i(m x+n y)]
$$

almost everywhere.
Surprisingly, this is an easy consequence of Carleson's theorem [1] on convergence of Fourier series of one variable.

Proof. It is enough to prove the maximal inequality

$$
\begin{equation*}
\left\|\sup _{\lambda}\left|\sum_{(m, n) \in \lambda P} a_{m n} \exp [i(m x+n y)]\right|\right\|_{2} \leqq C\|f\|_{2} . \tag{1}
\end{equation*}
$$

Inequality (1) follows from the special case in which P is a triangle with a vertex at the origin; for any polygon breaks up into triangles, and the characteristic function of any triangle is a linear combination of characteristic functions of triangles with vertices at zero. Consequently, we can assume P has the form $P=\{(x, y) \in S \mid(x, y) \cdot t<a\}$, where S is a sector of angle $<\pi$ emanating from the origin, $t \in R^{2}$, and $a \in R^{1}$. Thus (1) is equivalent to

$$
\begin{equation*}
\left\|\left.\sup _{b \in R^{1}}\right|_{(m, n) \in S ;(m, n) \cdot t<b} a_{m n} \exp [i(m x+n y)] \mid\right\|_{2} \leqq C\|f\|_{2} . \tag{2}
\end{equation*}
$$

Evidently, it suffices to prove (2) for rational t (with C independent of t), and to do so it is clearly enough to deal with the case $t=(p, q)$ where p and q are relatively prime integers. Finding integers r and s for which $p r-q s=1$, we let the matrix $A=\left(\begin{array}{c}p \\ p_{q}^{2} \\ r\end{array}\right) \in S L(2, Z)$ act as an automorphism of the 2 -torus. Under the action of A, (2) becomes

[^0]Copyright © American Mathematical Society 1971

[^0]: AMS 1969 Subject classifications. Primary 4211, 4240.

