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We continue from [2].

THEOREM. Let P be an open polygonal region in R?, containing the
origin. Set NP = { (\x, M| (x, v) €P} for \>0. Then for
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in L([0, 2w]X [0, 27]), we have
f(xt y) =1im)\—->oo Z(m,n)E)\P Amn€XP ['L(mx +ny)]
almost everywhere.

Surprisingly, this is an easy consequence of Carleson’s theorem [1]
on convergence of Fourier series of one variable.
Proor. It is enough to prove the maximal inequality

2 amn expli(me + ny)]

(m,n)ENP

¢y

sup
A

=cll

Inequality (1) follows from the special case in which P is a triangle
with a vertex at the origin; for any polygon breaks up into triangles,
and the characteristic function of any triangle is a linear combination
of characteristic functions of triangles with vertices at zero. Conse-
quently, we can assume P has the form P= {(x, NES ] (x, v)-t< a},
where S is a sector of angle <7 emanating from the origin, tER?, and
a&R. Thus (1) is equivalent to
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Evidently, it suffices to prove (2) for rational ¢ (with C independent
of £), and to do so it is clearly enough to deal with the case t=(p, q)
where p and ¢ are relatively prime integers. Finding integers r and
s for which pr —gs=1, we let the matrix A = ;) ESL(2, Z) act as an
automorphism of the 2-torus. Under the action of 4, (2) becomes
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