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1. Introduction. Schoenberg and Yang [8] have shown that a 
finite polyhedral set X admits a complex Haar system only if X is 
embeddable in the plane. We replace the requirement that X be a 
finite polyhedral set with several weaker assumptions. 

Let -XT be a compact Hausdorff space, and let C(X) be the linear 
space of continuous complex valued functions on X. A subspace M 
of C(X) of dimension n ^ 2 is said to be a complex Haar system if and 
only if each nonzero member of M has at most n — 1 zeros in X. Haar 
and Kolmogoroff (see [6, Theorem 19]) showed that Haar systems 
are precisely those finite-dimensional subspaces of C(X) that permit 
a unique best Chebyshev approximation to each ƒ in C(X). 

This article owes its being to Professor R. Creighton Buck who 
supervised its writing in my dissertation [7]. Credit is also due Pro
fessor Edward R. Fadell who made many useful suggestions. 

2. Main results. By a &-ode we mean a homeomorph of the sub-
space of the plane consisting of k distinct radii of unit length drawn 
from the origin, and by a disk we mean a homeomorph of the closed 
unit disk. Also, we will say that X is of type H if and only if X is a 
compact connected Hausdorff space such that C(X) contains a Haar 
system. Embeddable always means "in the plane. " 

In my dissertation I showed: 
(A) A space of type H that contains a disk is embeddable ; and 
(B) a locally connected space of type H that contains as an open set 

a k-odefor some k^3 is embeddable. 
Also, I conjectured: 
(C) Any locally connected space of type H is embeddable; and 
(D) not every space of type H is embeddable. 

Since then, Professors Brian R. Ummel and George Henderson of the 
University of Wisconsin, Milwaukee, have verified (C). 

In summary we now have 

THEOREM. Any space X of type H that is not embeddable is a 1-
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