MORE DISTANT THAN THE ANTIPODES

BY J. J. SCHÄFFER¹

Communicated by Victor Klee, February 12, 1971

1. Introduction. Let X be a real normed linear space, and let $\Sigma(X)$ be its unit ball, with the boundary $\partial \Sigma(X)$. If dim $X \ge 2$, δ_X denotes the inner metric of $\partial \Sigma(X)$ induced by the norm (cf. [1, §3]). If no confusion is likely, we write Σ , $\partial \Sigma$, δ . In [1] we introduced and discussed parameters of X based on the metric structure of $\partial \Sigma$; among them are $D(X) = \sup \{\delta(p, q) : p, q \in \partial \Sigma\}$, the *inner diameter* of $\partial \Sigma$, and $M(X) = \sup \{\delta(-p, p) : p \in \partial \Sigma\}$, half the *perimeter* of Σ . Obviously, $M(X) \le D(X)$, and it was conjectured [1, Conjecture 9.1] that M(X) = D(X) in every case, i.e., that "no pair of points of $\partial \Sigma$ is more distant in $\partial \Sigma$ than the most distant antipodes." This equality was shown to hold if dim X = 2 or dim X = 3 [1, Theorems 5.4, 5.8], if D(X) = 4 [3], if X is an L-space [4].

In this paper we explode this conjecture by showing that M(X) = 2, D(X) = 3 for $X = C_0((0, 1])$, the space of continuous real-valued functions on (0, 1] that tend to 0 at 0, with the supremum norm. We observe that this failure of the conjecture is "as strong as possible," since $2D(X) \leq M(X) + 4$ for every normed space X [3, Theorem 1]. The present result is a simple specific instance of the evaluation of M(X), D(X) for many spaces of continuous functions, which will be carried out in a forthcoming paper. It has appeared useful, however, to give a separate account of this very simple example. In addition, Lemma 1 is required for the general theory. The conjecture remains unresolved, and interesting, for spaces of finite dimension greater than three.

We shall use the terminology, notations, and elementary results of \$\$1-3 of [1]. In particular, a *subspace* of X is a linear manifold in X, not necessarily closed, provided with the norm of X. If Y is a subspace of X, we obviously have

(1)
$$\delta_Y(p,q) \geq \delta(p,q), \quad p,q \in \partial \Sigma(Y).$$

Instead of dealing with the space $C_0((0, 1])$, we prefer, for technical reasons, to consider the space $C_{\pi}([-1, 1])$ of odd continuous real-valued functions on [-1, 1] with the supremum norm. The two

AMS 1970 subject classifications. Primary 52A40; Secondary 46E15.

Key words and phrases. Inner metric on unit sphere, inner diameter, perimeter.

¹ This work was supported in part by NSF Grant GP-19126.

Copyright © 1971, American Mathematical Society