THE PLEMELJ DISTRIBUTIONAL FORMULAS1

BY DRAGIŠA MITROVIĆ

Communicated by Peter Lax, December 9, 1970

1. Introduction. Let (&') be the space of Schwartz distributions with compact supports defined on R. Let (\mathcal{O}'_{α}) be the space of distributions defined on the space (\mathcal{O}_{α}) of all infinitely differentiable complex-valued functions f on R such that $f(t) = O(|t|^{\alpha})$ and $f^{(p)}(t) = O(|t|^{\alpha})$ for all $p(|t| \to \infty)$.

In this announcement we extend the famous Plemelj formulas to the distributions in (\mathcal{E}') or (\mathcal{O}'_{α}) . A distributional extension in another direction has been given in [1]. The overlap with the present approach is little. The Plemelj numerically-valued relations are discussed in detail in [2], [5].

Paralleling the classical version, we will consider distributions T that are contained in (\mathcal{E}') or (\mathcal{O}'_{α}) and define the generalized Cauchy integral of T by $\hat{T}(z) = (1/2\pi i) \ \langle T_t, 1/(t-z) \rangle$, $\text{Im}(z) \neq 0$.

2. Statement of results. In what follows, D^+ and D^- denote the open upper and the open lower half-planes, respectively.

THEOREM 1. If $T \in (\mathcal{E}')$ and

$$\hat{T}^{\pm}(z) = rac{1}{2\pi i} \left\langle T_t, rac{1}{t-z}
ight
angle$$

for $z \in D^{\pm}$, then $\hat{T}^{\pm} = \lim_{\epsilon \to +0} \hat{T}^{\pm}(t \pm i\epsilon)$ exist in (\mathfrak{D}') and

$$\hat{T}^+ - \hat{T}^- = T,$$

(2)
$$\hat{T}^{+} + \hat{T}^{-} = -\frac{1}{\pi i} \left(T * \text{vp} \frac{1}{t} \right).$$

Theorem 2. If $T \in (\mathfrak{O}'_{\alpha})$ for $-1 \leq \alpha < 0$ and

$$\hat{T}^{\pm}(z) = rac{1}{2\pi i}igg\langle T_t, rac{1}{t-z}igg
angle$$

AMS 1970 subject classifications. Primary 30A88, 46F10.

Key words and phrases. Distributions in (8'), (\mathfrak{O}'_{α}) , convergence of distributions, decomposition of a distribution, generalized Cauchy integral, Plemelj distributional formulas, distributional analytic continuation, Hilbert boundary problem,

¹ The results (with applications) presented in this note were delivered at the Oberwolfach Conference on Functional Analysis (October, 1970).