SOME RELATIONS BETWEEN THE METRIC STRUCTURE AND THE ALGEBRAIC STRUCTURE OF THE FUNDAMENTAL GROUP IN MANIFOLDS OF NONPOSITIVE CURVATURE

BY DETLEF GROMOLL¹ AND JOSEPH A. $WOLF^2$

Communicated by Shlomo Sternberg, October 30, 1970

1. Introduction. Let \hat{M} be a complete simply connected riemannian manifold of dimension n and sectional curvature $K \leq 0$. Working with closed geodesically convex subsets $\emptyset \neq M \subset \hat{M}$, we use the fact (see [4] or [6]) that M is a topological submanifold of \hat{M} of some dimension k, $0 \leq k \leq n$, with totally geodesic interior ${}^{0}M$ and possibly empty boundary ∂M . Note that M is star-shaped from every point, thus contractible, and in particular simply connected.

Consider a properly discontinuous group Γ of homeomorphisms of M that acts by isometries on ${}^{0}M$. If the elements of Γ satisfy the semisimplicity condition described below (automatic if $\Gamma \setminus M$ is compact), and if Σ is a solvable subgroup of Γ , then Theorem 1 exhibits a flat totally geodesic Σ -stable subspace $E \subset M$, complete in \hat{M} , such that Σ has finite kernel on E and $\Sigma \setminus E$ is compact. Thus Σ is an extension of a finite group by a crystallographic group of rank dim E. In particular,

(i) Σ is finitely generated,

(ii) if $\Sigma \setminus M$ is compact, then M is a complete flat totally geodesic subspace of \hat{M} , and

(iii) if $\Gamma \setminus M$ is a manifold, then the image of E in $\Gamma \setminus M$ is a compact totally geodesic euclidean space form.

Theorem 1 extends and unifies several results concerning the case where $M = \hat{M}$ and $\Gamma \setminus M$ is a compact manifold. Those results are the classical theorem of Preissmann [7] which says that if K < 0 then every nontrivial abelian subgroup of Γ is infinite cyclic, Byers' extension [2] of Preissmann's theorem to solvable subgroups of Γ , the case [10] where the elements of Σ are bounded isometries of M, the case [11] where Σ is central in Γ , and the case [11] where Γ is nilpotent. Theorem 1 was known [9] in the case where M is riemannian symmetric and $\Gamma \setminus M$ is compact. The case where $M = \hat{M}$ and $\Gamma \setminus M$ is

AMS 1970 subject classifications. Primary 53C20; Secondary 20E40, 55A05.

Key words and phrases. Nonpositive curvature, fundamental group, convex subset. ¹ Partially supported by N.S.F. Grant GP-19585.

² Partially supported by N.S.F. Grant GP-16651.

Copyright © 1971, American Mathematical Society