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1. Introduction. Let M be a. complete simply connected riemannian 
manifold of dimension n and sectional curvature K^O. Working 
with closed geodesically convex subsets 0 5̂  MQ M, we use the fact 
(see [4] or [ó]) that M is a topological submanifold of M of some 
dimension k, O^kSn, with totally geodesic interior °Mand possibly 
empty boundary dM. Note that M is star-shaped from every point, 
thus contractible, and in particular simply connected. 

Consider a properly discontinuous group T of homeomorphisms 
of M that acts by isometries on °M. If the elements of T satisfy the 
semisimplicity condition described below (automatic if T\M is com
pact), and if S is a solvable subgroup of T, then Theorem 1 exhibits 
a flat totally geodesic S-stable subspace EC.M, complete in M, such 
that 2 has finite kernel on E and 2 \ E is compact. Thus S is an ex
tension of a finite group by a crystallographic group of rank dim E. 
In particular, 

(i) 2) is finitely generated, 
(ii) if 2 \ M is compact, then M is a complete flat totally geodesic 

subspace of M, and 
(iii) if T\M is a manifold, then the image of E in T\M is a compact 

totally geodesic euclidean space form. 
Theorem 1 extends and unifies several results concerning the case 

where M = M and T\M is a compact manifold. Those results are the 
classical theorem of Preissmann [7] which says that if K<0 then 
every nontrivial abelian subgroup of T is infinite cyclic, Byers' exten
sion [2] of Preissmann's theorem to solvable subgroups of T, the 
case [lO] where the elements of S are bounded isometries of M, the 
case [ l l ] where S is central in T, and the case [ l l ] where Y is nil-
potent. Theorem 1 was known [9 ] in the case where M is riemannian 
symmetric and T\M is compact. The case where M= M and T\M is 
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