A NONSTANDARD REPRESENTATION OF MEASURABLE SPACES AND L_{∞}

BY PETER A. LOEB¹

Communicated by Paul Cohen, November 9, 1970

The results given in this note were obtained by applying to measure theory the methods of nonstandard analysis developed by Abraham Robinson [5]. Amplifications of these results with proofs will be published elsewhere.² It is shown here that there are linear mappings from an arbitrary, real L_{∞} space and its dual L_{∞}^* into Euclidean ω -space E^{ω} , where ω is an infinite integer. Finite valued, finitely additive measures on the underlying measurable space are also mapped onto elements of E^{ω} , and integrals are infinitesimally close to the corresponding inner products in E^{ω} . Yosida and Hewitt's representation of L_{∞}^* [6] is an immediate consequence of these results.

In general, we use Robinson's notation [5]. If we have an enlargement of a structure that contains the set R of real numbers, then *Rdenotes the set of nonstandard real numbers and *N, the set of nonstandard natural numbers. A set S is called *finite if there is an internal bijection from an initial segment of *N onto S; a *finite set has all of the "formal" properties of a finite set. Given b and c in *R, we write $b \simeq c$ if b - c is in the monad of 0; when b is finite, we write °bfor the unique, standard real number in the monad of b.

1. The partition P and bounded measurable functions. Let X be an infinite set and \mathfrak{M} an infinite σ -algebra of subsets of X. Fix an enlargement of a structure that contains X, \mathfrak{M} , and the extended real numbers. There is a *finite, * \mathfrak{M} -measurable partition P of *X such that P is finer than any finite \mathfrak{M} -measurable partition of X. That is, $P \subset \mathfrak{M}$ has the following properties:

(i) There is an infinite integer $\omega_P \in N$ and an internal bijection from $I = \{i \in N: 1 \leq i \leq \omega_P\}$ onto P. Thus we may write $P = \{A_i: i \in I\}$.

(ii) If *i* and *j* are in *I* and $i \neq j$, then $A_i \neq \emptyset$ and $A_i \cap A_j = \emptyset$.

AMS 1970 subject classifications. Primary 26A98, 28A60; Secondary 28A20, 28A25.

Key words and phrases. Measurable spaces, *finite partition, Euclidean ω -space, finitely additive measures, purely finitely additive measures, representation of L^*_{∞} , conditional expectation.

¹ This work was supported by N.S.F. Grant NSF GP 14785.

² These results were announced at the 1970 Oberwolfach conference on nonstandard analysis.

Copyright © 1971, American Mathematical Society