ON THE SCHUR SUBGROUP

BY K. L. FIELDS¹

Communicated by I. N. Herstein, November 19, 1970

Let A_x be a simple component of the group algebra QG of a finite group G over the rationals Q having center K. Let p be a rational prime and Q_p the p-adic completion of Q. Then $Q_p \otimes_Q A_x$ is a direct sum of simple algebras $K_p \otimes_K A_x$ where p is a prime divisor of p. The characters associated with these simple components are all conjugate. Since if a representation with K-valued character χ can be written in K_p , then a representation with character χ^{σ} may be written in $K_p\sigma$, we see that either A_x is split at every prime dividing p or at none. This fact has also been observed independently by Mark Benard.

We are now in a position to apply results of Mac Lane [3, Corollary] together with those of [1]:

THEOREM 1. If A_x is a quaternion algebra central over K, then $A_x \sim K \otimes_L B$ where L is any subfield of K such that the galois group of K/L is cyclic, and B is a simple algebra central over L.

Hence if K/Q is cyclic of odd order, the simple algebras central over K appearing in some QG are precisely those of the form $K \otimes_Q B$ where B is a quaternion algebra over Q (cf. [2]).

As a final remark, we observe that the above together with the construction of [1] enable us to determine those algebras of index 3 in Sch $(Q\sqrt{(-3)})$, the Schur subgroup of $Q(\sqrt{(-3)})$. By [2], they are not of the form $Q(\sqrt{(-3)}) \otimes_Q A$. Hence by Mac Lane [3], the above remarks and the following construction, they must have zero Hasse invariant at any primes which are ramified or inertial; i.e. if $p \equiv -1 \mod (3)$ or p=3 then there is zero Hasse invariant at primes of $Q(\sqrt{(-3)})$ extending these. If $p\equiv 1$ (3), then p splits into 2 primes in $Q(\sqrt{(-3)})$, and we show that there is an A_x with Hasse invariant $\frac{1}{3}$ at one of these primes, $\frac{2}{3}$ at the other, and zero elsewhere: Simply let Gbe the group generated by a, b, c where $a^p=1, b^{p-1}=c, c^3=1$ and where c is central and b acts on a as the generator of the galois group

AMS 1969 subject classifications. Primary 2080; Secondary 1640.

Key words and phrases. Conjugate, quaternion algebra, Schur subgroup.

¹Research supported by the National Science Foundation; thanks are due M. Schacher for his helpful criticism.