THE MANY-ONE EQUIVALENCE OF SOME GENERAL COMBINATORIAL DECISION PROBLEMS

BY C. E. HUGHES, ROSS OVERBEEK AND W. E. SINGLETARY¹

Communicated by Dana Scott, September 28, 1970

1. Introduction. A decision problem for a combinatorial system shall denote a pair (ϕ, S) where ϕ is a specified kind of decision problem (e.g. derivability problem, halting problem, etc.) and S is a combinatorial system. Two decision problems (ϕ_1, S_1) , (ϕ_2, S_2) are said to be of the same many-one degree (of unsolvability) if there exist effective many-one mappings f and g such that each instance of (ϕ_1, S_1) is reducible to an instance of (ϕ_2, S_2) via f and each instance of (ϕ_2, S_2) is reducible to an instance of (ϕ_1, S_1) via g.

A general combinatorial decision problem, i.e., a decision problem for a class of combinatorial systems, shall denote a pair (ϕ, C) where ϕ is a specified kind of decision problem and C is a class of combinatorial systems (e.g. Turing machines, semi-Thue systems, etc.). A general combinatorial decision problem (ϕ_1, C_1) is many-one reducible to another general combinatorial problem (ϕ_2, C_2) if there exists an effective one-one mapping ψ of the problems p associated with (ϕ_1, C_1) into the problems associated with (ϕ_2, C_2) such that p is of the same many-one degree as $\psi(p)$. (ϕ_1, C_1) and (ϕ_2, C_2) are said to be many-one equivalent if each is many-one reducible to the other.

The reduction of one general combinatorial decision problem to another has been investigated by numerous authors. In particular, W. E. Singletary [15] has combined results of his own and those of others in such a way as to provide an effective proof of the (r.e.) equivalence of a number of general combinatorial decision problems. This former work has lead W. W. Boone to suggest that a stronger form of equivalence might exist between at least some subset of the problems considered. Our aim is to show that a number of these general problems are many-one equivalent. In addition, we indicate that these are, in a sense, best possible results.

AMS 1970 subject classifications. Primary 02F30, 02F43; Secondary 02F05, 02F15, 02F25, 02F47.

Key words and phrases. General combinatorial decision problem, many-one equivalence, many-one degrees, decision problem, halting problem, derivability problem, word problem, confluence problem, post correspondence problem, Turing machine, Markov algorithm, recursive function, semi-Thue system, Thue system.

¹ This research was partially supported by NSF Grant GP-23779.