THE CLASSIFICATION OF FREE ACTIONS OF CYCLIC GROUPS OF ODD ORDER ON HOMOTOPY SPHERES

BY WILLIAM BROWDER,¹ TED PETRIE AND C. T. C. WALL

Communicated by M. F. Atiyah, June 19, 1970

Consider the cyclic group Z_p acting freely on a homotopy sphere Σ^{2n+1} . This action is a map $\mu: Z_p \times \Sigma \to \Sigma$. We shall consider the three cases where the action is smooth, piecewise linear (PL) or topological. If we pick a generator $T \in Z_p$ then we may say that two actions $\mu_i: Z_p \times \Sigma_i^{2n+1} \to \Sigma_i^{2n+1}$, i=1, 2, are equivalent actions if there is an equivalence $f: \Sigma_1 \to \Sigma_2$ in the appropriate category (i.e. f is diffeomorphism, PL equivalence or homeomorphism depending on whether μ_i are smooth, PL or topological) such that $f\mu_1(T, x) = \mu_2(T, f(x))$. Among smooth actions we have the linear actions on $S^{2n+1} \subset C^{n+1}$ where the action is given by

$$(z_0, \cdots, z_n) \rightarrow (\exp[2\pi i\theta_0/p]z_0, \cdots, \exp[2\pi i\theta_n/p]z_n)$$

where $\theta_0, \dots, \theta_n$ are integers between 1 and p-1, prime to p. The quotient of S^{2n+1} by this action is the Lens space $L^{2n+1}(p;\theta_0,\dots,\theta_n)$, and it is well known that for any free Z_p action on Σ^{2n+1} , the orbit space Σ/Z_p is homotopy equivalent to $L^{2n+1}(p;\theta_0,\dots,\theta_n)$ for some appropriate choice of θ_0,\dots,θ_n .

Now two Z_p -actions (μ_i, Σ_i) , i = 1, 2, are equivalent if and only if the orbit spaces Σ_i/Z_p are equivalent in the appropriate category. The equivalence is given by an orientation preserving isomorphism $g: \Sigma_1/Z_p \rightarrow \Sigma_2/Z_p$ such that $g_*(T) = T$ where T is identified with the corresponding element in $\pi_1(\Sigma_i/Z_p)$. Thus the problem of equivalence of Z_p actions is the problem of classifying manifolds of the homotopy type of Lens spaces up to equivalence in the corresponding category.

In this note we announce a procedure for doing this when p is odd, $n \ge 2$. Some related work has been done by R. Lee [3], [4]. The result for p=2 was previously found by Lopez de Medrano [5] and Wall [11] and the answer for p odd is quite analogous. One uses the theory of surgery to study the problem, and calculates as far as possible the terms arising. As usual one arrives at a complete classification in the

AMS 1970 subject classifications. Primary 57D65, 57E05; Secondary 20C10.

Key words and phrases. Free cyclic group actions on spheres, surgery, free action, Lens space, simple homotopy structure, signature invariant, torsion, suspension.

¹ Partially supported by an NSF grant.

Copyright © 1971, American Mathematical Society