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1. Introduction. Geometry in the Nash category is intermediate 
between real algebraic and real analytic geometry, and provides a 
link whereby methods of algebraic geometry can be applied to some 
problems in differential topology. See [ l ] for example. 

The Nash structure of a manifold embedded in Rn is not deformed 
by perturbations of the embedding; this is a consequence of the 
uniqueness theorem of Nash [2]. In the context of the general prob­
lem of deformation of Nash structures, Mazur has asked whether 
these "embedding" structures are in fact rigid (see below for defini­
tions). We show here that for the unit circle S1 this is not the case. 

We wish to thank Barry Mazur for introducing us to Nash mani­
folds, and we are most grateful to him for the several conversations 
in which he showed us how to present our own examples. 

2. Definitions. A real analytic function f:U—>R on an open set 
UQRn is called algebraic if there is a non trivial real polynomial P 
such that P(xi, • • • , xny ƒ) = 0 where the x% are the coordinate func­
tions. A Nash manifold is a topological space M together with a sheaf 
OM of local rings over M such that every point pÇzM has a neigh­
bourhood V on which 0M | V is isomorphic to the sheaf Ou of germs of 
algebraic functions on open subsets of an open subset U of Rn. Alter­
natively, a Nash manifold can usefully be thought of as a real analytic 
manifold with maximal atlas { Uay <f>a} of charts such that the overlap 
maps 4>p o<f>al:<l>a(Ua(^ Up)—><l>p(Uttr\ U$) are all coordinate-wise alge­
braic. A real analytic map yp\ M—>N is a Nash map if \[/*0NC.0M. Nash 
manifolds M, N are equivalent (M=N) if there is a diffeomorphism 
h:M—>N such that h and h~~l are Nash maps. A Nash manifold M is 
rigid if any real analytically locally trivial Nash map p\E~+B with 
p~xi}))=M for some bGB is locally trivial (in the Nash sense) at 6. 

EXAMPLES. (1) Rn has a canonical Nash structure R"; we take 
U=Rn in the above. 

(2) A real algebraic embedding i:M—>Rn induces an embedding 
structure Mi on M from J?? by 0;ift=i*0Kn». This structure does not 
depend on the choice of embedding [2] so we denote it by Memb. 
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