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1. Introduction. Let QL denote the group of cobordism classes of
oriented Poincaré duality spaces of dimension #. (See [2] for defini-
tions.) The Pontrjagin-Thom construction yields a natural homo-
morphism p:QEP—r,(MSG) where MSG is the Thom spectrum
associated to the universal spherical fibration over BSG.

N. Levitt [2] has shown that if 33 (mod 4), then p is surjective,
and if =3 (mod 4), then cokernel(p)C Z,. More precisely, Levitt
has shown that, if #=3, there is a subgroup &, CQ.° (it is likely that
0, =0rP) and an exact sequence

(1.0 . ——>P,.—->Q,.£>1r,,(MSG) —> Py -

where P,=2Z, 0, Z,, 0 as =0, 1, 2, 3 (mod 4), respectively. Further,
image(P,) CQLP is generated by the cobordism class [K”] where, if
n=0 (mod 4), K" is the almost parallelizable Milnor manifold of index
8, and, if #=2 (mod 4), K” is the almost parallelizable Kervaire
manifold constructed by plumbing together the tangent bundles of
two (n/2)-spheres. (K*is not a manifold, but it is a Poincaré duality
space.)
Our main results, proved in §2, are the following.

TrHEOREM 1.1. The Kervaire manifold, K**?, bounds a Poincaré
duality space.

THEOREM 1.2. The Milnor manifold, K*, is Poincaré duality co-
bordant to 8(CP(2))*.

It follows from Theorem 1.1 that the long exact sequence (1.0)
contains short exact sequences

0 — Quys — T 3(MSG) — Z, — 0.

Our proof of Theorem 1.1 can be formulated to show that this se-
quence is actually split exact.
Theorem 1.2 describes the short exact sequences

0—Z— 0y — 74(MSG) — 0
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