GENERATION OF EQUICONTINUOUS SEMIGROUPS BY HERMITIAN AND SECTORIAL OPERATORS. II

BY ROBERT T. MOORE¹

Communicated by M. H. Protter, September 25, 1970

1. Introduction. This announcement concerns the topological aspects of the generation theory of equicontinuous semigroups and groups of operators on a complete complex locally convex space (lcs) \mathfrak{X} , and uses the recalibration theorem from [6] to relate these to the more geometrical aspects treated in [8] (with which the reader is assumed to be familiar). Perturbation techniques from [7], along with other devices, are used to develop applications to the theory of abstract heat equations and to the theory of distribution semigroups. Details will appear in [9].

2. Quasi-equicontinuous semigroups. The semigroups considered here generalize the contraction holomorphic semigroups CH(Φ , Γ) on a complete complex lcs \mathfrak{X} discussed in [8], where for, $0 \leq \Phi \leq \pi/2$, $S_{\Phi} = \{z \in \mathbb{C}: |\arg z| \leq \Phi\}$ and $\Delta_{\Phi} = \{z \in \mathbb{C}: \pi/2 + \Phi \leq \arg z \leq 3\pi/2 - \Phi\}$.

DEFINITION 1. Let $\omega \ge 0$. Then a family $\{T_z: z \in S_{\Phi}\} \subset \mathfrak{L}(\mathfrak{X})$ of continuous linear transformations is a *quasi-equicontinuous holo-morphic semigroup of type* ω , or is in EH($\Phi; \omega$) iff

(a) it satisfies the usual algebraic, continuity and holomorphy conditions as in Definition (1a) of [8], and

(b) the family $\{e^{-\omega z}T_z: z \in S_{\Phi}\}$ is equicontinuous in $\mathfrak{L}(\mathfrak{X})$.

EXAMPLES. (1) If $\{T_t:t\in[0,\infty)\}$ is a classical C_0 semigroup on a *B*-space [3], and $\omega > \omega_0 = \lim\{(t^{-1}\log ||T_t||):t\to\infty\}$, then $||T_t|| \leq Me^{\omega t}$ for suitable *M* and the semigroup is in EH(0; ω) since operator-normbounded sets are equicontinuous. Similarly, every semigroup in Hille's class $H(-\Psi, \Psi)$ on a *B*-space [3] is in EH(Φ ; $\omega(\Phi)$) for every $\Phi < \Psi$ and suitable $\omega(\Phi)$.

(2) Every $CH(\Phi, \Gamma)$ semigroup from [8] is in $EH(\Phi; 0)$.

(3) Every equicontinuous C_0 semigroup as in Yosida [10] is in

Copyright @ 1971, American Mathematical Society

AMS 1969 subject classifications. Primary 4750, 4748; Secondary 4601.

Key words and phrases. C_0 equicontinuous semigroups, quasi-equicontinuous holomorphic semigroup, exponential distribution semigroup, contraction semigroup, infinitesimal generator, sectorial operator, hermitian operator, analytic continuation of semigroups, abstract Laplacian, abstract heat equation.

¹ The author gratefully acknowledges partial support of this research by the National Science Foundation through NSF GP 12548.