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BY KURT MAHLER 

Before I can explain the subject of my talk, let me introduce the 
notation to be used : Rn denotes the w-dimensional space of all points, 
x = (#i, • • • , xn), y = (yi> * ' * » Jn)y 0 = (0, • • • , 0), etc., with real 
coordinates, 0 being called the origin. Such points will be treated as 
vectors, and we put 

x + y = (a?i + yh • - • , xn + yn), Cx = (Cxh • • • , Cxn) 

where C is any real number. We also use the inner product 

xy = xiyi + • • • + xnyn 

of two points and the determinant 
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( x ( l ) ? . . . 9 x<»>) « 

Xnl 

of n points 

xw = (xhh • • • , xhn) (A = 1, 2, , »). 

This determinant is T^O if and only if the n points are linearly inde­
pendent over R. Points with integral coordinates are called lattice 
points, and we use A to denote the lattice of all such lattice points. 
À is an Abelian group with n independent generators under addition. 
Every bounded set contains at most finitely many lattice points. 

We shall be concerned with the relation between A and convex 
bodies. Here a convex body K is to mean a bounded closed convex 
set in Rn which contains the origin as an interior point and is sym­
metric in 0. Important examples are the "cube" \x\\ ^ 1 , • • • , 
\xn\ g l , the "octahedron" \xi\ + • • • +\xn\ g l , and the "sphere" 
# ? + • • • +xl^l. The volume of a convex body K is defined by 
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