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Let T denote the circle and I a closed ideal of L1(T) under convolu-
tion. Let §I denote the set of sequences of complex numbers which
are Fourier transforms of elements of I.

§I = {(t): AfE I, f(n) = &}.

A subset E of the integers is called a set of interpolation for the multi-
pliers of §I (= M(5I)) if every bounded complex sequence defined on
E is the restriction to E of a multiplier of 1. E is called a Sidon set
if every bounded complex sequence on E is the restriction to E of the
Fourier transform of some measure on I. Answering a question of
Y. Meyer we show here that every set of interpolation ECZ+ for
M(FH(T)) is a Sidon set.

Let A(T) denote the Banach space of all analytic continuous func-
tions on T equipped with the supremum norm. Let 8=HY(T)® C(T)
be the Banach space of all elements of 4 (7T") which can be expressed
in the form .7 fi* g where fi€HY(T), ge€C(T) and such that
>0 |If#ll1l|g#l|« < . The norm || -||s in B is the infimum over all such
representations. Meyer [1] has shown that the dual of 8 is precisely
M(SH\(T)).

TrEOREM 1. B is isometrically isomorphic to A(T).

Proor. It is clear that the natural embedding of 8in 4 (7) is norm
decreasing. Let P(0) = D>_; arexp[inif] be an arbitrary analytic trig-
onometric polynomial and write ¢'#°P(§) as

N v

> (1 — —l—f—l> expli(n + N)0] * 3, by exp[i(m + M)0]
n=—nN N k=1
where byi=ar{1—|m+M—N|/N}-t. Choose M=N—[N'2] and
N larger than n,. It is clear that as N— «, by—ax for each k. Since the
polynomial on the left-hand side is just a translate of the usual Fejer
kernel, it has L! norm equal to 1. By the choice of M, the sup norm
of the polynomial on the right-hand side tends to || P(8)||. as N—.
Hence

[|explia£0]P(6)[| s < [| PO + ¢
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