SETS OF INTERPOLATION FOR MULTIPLIERS

BY BENJAMIN B. WELLS, JR.

Communicated by Ray A. Kunze, June 3, 1970

Let T denote the circle and I a closed ideal of $L^1(T)$ under convolution. Let $\mathfrak{F}I$ denote the set of sequences of complex numbers which are Fourier transforms of elements of I.

$$\mathfrak{I} = \{(\xi_n) \colon \exists f \in I, \quad \hat{f}(n) = \xi_n\}.$$

A subset E of the integers is called a set of *interpolation* for the multipliers of $\mathfrak{F}I$ (= $M(\mathfrak{F}I)$) if every bounded complex sequence defined on E is the restriction to E of a multiplier of $\mathfrak{F}I$. E is called a *Sidon* set if every bounded complex sequence on E is the restriction to E of the Fourier transform of some measure on E. Answering a question of E. Meyer we show here that every set of interpolation $E \subseteq \mathbb{Z}^+$ for $E \subseteq \mathbb{Z}^$

Let A(T) denote the Banach space of all analytic continuous functions on T equipped with the supremum norm. Let $\beta = H^1(T) \hat{\otimes} C(T)$ be the Banach space of all elements of A(T) which can be expressed in the form $\sum_{1}^{\infty} f_k * g_k$ where $f_k \in H^1(T)$, $g_k \in C(T)$ and such that $\sum_{1}^{\infty} ||f_k||_1 ||g_k||_{\infty} < \infty$. The norm $||\cdot||_{\beta}$ in β is the infimum over all such representations. Meyer [1] has shown that the dual of β is precisely $M(\mathfrak{F}H^1(T))$.

THEOREM 1. β is isometrically isomorphic to A(T).

PROOF. It is clear that the natural embedding of β in A(T) is norm decreasing. Let $P(\theta) = \sum_{1}^{r} a_{k} \exp\left[in_{k}\theta\right]$ be an arbitrary analytic trigonometric polynomial and write $e^{iM\theta}P(\theta)$ as

$$\sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) \exp[i(n+N)\theta] * \sum_{k=1}^{p} b_k \exp[i(n_k+M)\theta]$$

where $b_k = a_k \{1 - |n_k + M - N|/N\}^{-1}$. Choose $M = N - [N^{1/2}]$ and N larger than n_r . It is clear that as $N \to \infty$, $b_k \to a_k$ for each k. Since the polynomial on the left-hand side is just a translate of the usual Fejer kernel, it has L^1 norm equal to 1. By the choice of M, the sup norm of the polynomial on the right-hand side tends to $||P(\theta)||_{\infty}$ as $N \to \infty$. Hence

$$\|\exp[iM\theta]P(\theta)\|_{\beta} < \|P(\theta)\|_{\infty} + \epsilon$$

AMS 1969 subject classifications. Primary 4258; Secondary 4205. Key words and phrases. Multiplier, Sidon set, $\Lambda(2)$, set of interpolation.