FIXED POINT SCHEMES

BY JOHN FOGARTY ${ }^{1}$
Communicated by Murray Gerstenhaber, October 26, 1970

Let S be a scheme and let G be a group scheme over S. If $\alpha: G \times X$ $\rightarrow X$ is an action of G on X over S (cf. [4]), we say that (X, α)-or simply X-is a G-scheme over S. The 'fixed point functor' h_{X}^{G} of G in X is defined as follows. For each S-scheme Y, let Y_{G} denote the trivial G-scheme (Y, p_{2}). Then

$$
h_{X}^{G}(Y)=\left(\text { set of } G \text {-linear } S \text {-morphisms } \varphi: Y_{G} \rightarrow X\right)
$$

Theorem 1. If \mathfrak{C} is the category of locally noetherian S-schemes and quasicompact S-morphisms, X is a G-scheme in \mathfrak{C}, and G is flat over S, then h_{X}^{G} is represented by a closed subscheme X^{G} of X.

In this vast generality it is not to be expected that much detailed information about X^{G} can be obtained. Nevertheless, one does have the following 'rigidity' result when G is an abelian scheme over S (cf. [4]).

Theorem 2. Let G be an abelian scheme over S and let X be a connected locally noetherian G-scheme over S. Then either X^{G} is empty or $X^{G}=X$.

It is conceivable that this property could be used as the starting point for the general theory of abelian schemes, e.g., commutativity and Chow's theorem (cf. [3]) are easy consequences of Theorem 2.

For a deeper study of fixed point schemes, we restrict ourselves to the category of algebraic schemes over a field k, acted upon by algebraic groups (i.e., smooth group schemes of finite type) over k. One result, which is related to a special case of a recent result of G. Horrocks [2], is

Proposition 3. Let G be a linear algebraic group over k. The largest k-closed normal subgroup H of G such that, for all proper connected G-schemes X over k, X^{H} is connected is the unipotent radical of G.

For smooth schemes and 'very good groups' one has:
AMS 1970 subject classifications. Primary 14L15.
Key words and phrases. Group scheme, action, fixed point, abelian scheme, unipotent group, linearly reductive group.
${ }^{1}$ The author was supported by a grant under NSF-GP-25329.

