AN EXISTENCE THEOREM FOR SURFACES OF CONSTANT MEAN CURVATURE

BY HENRY C. WENTE

Communicated by M. H. Protter, September 16, 1970

I. Introduction. Let γ be an oriented, rectifiable Jordan curve in E^3 homeomorphic to the unit circle, $u^2+v^2=1$. Let Δ be the open unit disk, $u^2+v^2<1$, and let $\overline{\Delta}$ be its closure. The classical existence theorem for Plateau's problem as proven by J. Douglas [1], and T. Rado [6] asserts the existence of a minimal surface of the type of the unit disk, whose boundary is γ , and which has minimum Lebesgue area. The theorem stated in this paper is an extension of this result to surfaces of constant mean curvature.

Let $h(u, v): \overline{\Delta} \to E^3$ be a given minimal surface solving Plateau's problem. Let K be a given constant and consider the class of continuous vector functions $\mathbf{x}: \overline{\Delta} \to E^3$ whose boundary values describe γ , and such that the oriented volume enclosed by \mathbf{x} and \mathbf{h} is K. We prove that in this class there is an \mathbf{x} of minimum Lebesgue area. \mathbf{x} is a representation of a surface of constant mean curvature and satisfies the following system of equations.

(a) $\Delta \mathbf{x} = 2H(\mathbf{x}_u \times \mathbf{x}_v),$

(1) (b)
$$|\mathbf{x}_u| \equiv |\mathbf{x}_v|$$
, $(\mathbf{x}_u \cdot \mathbf{x}_v) = 0$ [conformality],

(c) $\mathbf{x}: \partial \Delta \to E^3$ is an admissible representation of γ .

Previous existence theorems for the system (1) have been given by E. Heinz [2], H. Werner [8], and S. Hildebrandt [3]. They proved that if γ is contained in the unit ball, $x^2+y^2+z^2 \leq 1$, and if H with $|H| \leq 1$ is given, then there exists a solution to the system (1) which is itself contained in the unit ball.

We now give a more precise statement of the theorem.

II. Statement of theorem. Denote by $S(\gamma)$ the set of vector functions $\mathbf{x}: \overline{\Delta} \to E^3$ continuous on $\overline{\Delta}$, continuously differentiable on Δ , whose boundary values are an admissible representation of the oriented Jordan curve γ , and such that the "Dirichlet" integral

(2)
$$D(\mathbf{x}) \equiv \int \int_{\mathbf{A}} |\mathbf{x}_u|^2 + |\mathbf{x}_v|^2 \, du \, dv$$

AMS 1970 subject classifications. Primary 26A63, 28A75, 35A15, 49F99.

Key words and phrases. Plateau's problem, parametric surface, constant mean curvature, Dirichlet integral, oriented volume functional, Sobolev Hilbert space.

Copyright @ 1971, American Mathematical Society