THE STRUCTURE OF ω -REGULAR SEMIGROUPS

BY JANET AULT AND MARIO PETRICH

Communicated by R. S. Pierce, July 20, 1970

1. Finding the complete structure of regular semigroups of a certain class has succeeded only when sufficiently strong conditions on idempotents and/or ideals have been imposed. On the one hand, there is the theorem of Rees [7], giving the structure of completely 0-simple semigroups, and its successive generalizations to primitive regular semigroups [2], and 3- and 3₁-regular semigroups [4]. On the other hand, with very different restrictions, Reilly [8] has determined the structure of bisimple ω -semigroups, Kočin [1] of inverse simple ω -semigroups.

An ω -chain with zero is a poset $\{e_i | i \ge 0\} \cup 0$ with $e_i > e_j$ if i < j, and $0 < e_i$ for all i, j. We call a regular semigroup $S \omega$ -regular if S has a zero and the poset of its idempotents is an orthogonal sum [2] of ω -chains with zero. We announce here the complete determination of the structure of such semigroups, including various special cases thereof, and briefly mention their isomorphisms.

2. An ω -regular semigroup can be uniquely written as an orthogonal sum of ω -regular prime (i.e., with 0 a prime ideal) semigroups. This reduces the problems of structure and isomorphism to ω -regular prime semigroups. We distinguish three cases: (i) 0-simple, (ii) prime with a proper 0-minimal ideal, (iii) prime without a 0-minimal ideal. Case (i) is the most difficult (and interesting) and includes a variety of special cases some of which reduce to those constructed by Reilly [8], Kočin [1], and Munn [5], [6].

3. Let A be a nonempty set, d be a positive integer, V be a semigroup which is a chain of d groups $G_0 > G_1 > \cdots > G_{d-1}$, and σ be a homomorphism of V into G_0 . Let $w: A \to \{0, 1, \cdots, d-1\}$ be any function, denoted by $w: \alpha \to w_\alpha$. For $\alpha \in A$, $0 \leq i, j < d$, define $\langle \alpha, i \rangle$ by

$$\langle \alpha, i \rangle \equiv w_{\alpha} + i \pmod{d}, \qquad 0 \leq \langle \alpha, i \rangle < d,$$

and define $[i, \alpha, j]$ to satisfy

$$[i, \alpha, j]d = (i - j) - (\langle \alpha, i \rangle - \langle \alpha, j \rangle).$$

Copyright © 1971, American Mathematical Society

AMS 1970 subject classifications. Primary 20M10.

Key words and phrases. Regular semigroups, ω -regular, ω -semigroups, 0-simple, 0-bisimple, prime semigroups, orthogonal sum, Brandt semigroups, primitive inverse semigroups, 0-restricted homomorphisms, semilattice, tree, Brandt tree, rooted Brandt tree.