ISOMORPHISM THEORY OF CONGRUENCE GROUPS

BY ROBERT E. SOLAZZI

Communicated by I. N. Herstein, May 18, 1970

This note is an announcement of four theorems I proved in [5]-[9] on the isomorphisms of the linear, symplectic, and unitary congruence groups. A sketch of the proofs is given.

NOTATION. Let V be an n-dimensional vector space over the field F, $n \ge 2$. For $\sigma \in GL_n(V)$, let $\check{\sigma}$ denote the contragredient of σ (inverse of the transpose). Let \neg denote the natural map of $GL_n(V)$ onto $PGL_n(V)$; for any subset S of $GL_n(V)$, \overline{S} is the image of S in $PGL_n(V)$ under the \neg map.

A transvection τ is a linear transformation of determinant one which fixes all vectors of some hyperplane, called the proper hyperplane of τ . If $\tau \neq 1$ then $(\tau - 1)V$ is a line called the proper line of τ . An element $\bar{\tau}$ of $PGL_n(V)$ is called a (projective) transvection if τ is a transvection. The proper line and proper hyperplane of $\bar{\tau}$ are defined as the proper line and hyperplane of τ .

Congruence groups. Again let V be an *n*-dimensional vector space over F, $n \ge 2$; let o be any integral domain with quotient field F. An o-module $M \subset V$ is bounded if there is an o-linear isomorphism of M into some free o-module of finite dimension. Assume M is a bounded o-module with FM = V. We define the integral linear group $GL_n(M)$ as $\{\sigma \in GL_n(V) | \sigma M = M\}$. The integral symplectic group $Sp_n(M)$ is $\{\sigma \in Sp_n(V) | \sigma M = M\}$ and is only defined for even n.

Let f(x, y) be a nondegenerate hermitian form on V whose involution maps the domain onto itself; the integral unitary group $U_n(M, f)$ is defined as $U_n(M, f) = \{ \sigma \in U_n(V, f) | \sigma M = M \}.$

Now let *a* be a nonzero ideal in *o*. Consider the groups

$$GL_n(M; a) = \{ \sigma \in GL_n(M) \mid (\sigma - 1)M \subset aM \},$$

$$SL_n(M; a) = GL_n(M; a) \cap SL_n(V)$$

and let $TL_n(M; a)$ be the group generated by all transvections in $GL_n(M; a)$.

Now put
$$Sp_n(M; a) = \{\sigma \in Sp_n(M) \mid (\sigma-1)M \subset aM\}$$
 and let

Copyright @ 1971, American Mathematical Society

AMS 1970 subject classifications. Primary 20H05, 15A63; Secondary 15A57.

Key words and phrases. Linear group, symplectic, unitary group, congruence group, transvection, semisimilitute, isotropic line, collineation.