ON THE DEMIREGULARITY OF WEAK SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS

BY JINDŘICH NEČAS

Communicated by Felix Browder, June 29, 1970

1. Introduction. Let Ω be a bounded domain with infinitely differentiable boundary $\partial\Omega$ in *n*-dimensional real space R_n . Let *k* be a positive integer, and let us define the functions $a_i(x, \xi)$ for multiindices $|i| = i_1 + i_2 + \cdots + i_n \leq k$, continuous in $\overline{\Omega} \times R_{\kappa}$, where κ is the number of indices of length $\leq k$. By $W_p^{(k)}(\Omega)$, we denote the Sobolev space of L_p -functions whose derivatives up to the order *k* are also L_p -functions, with the norm

$$||u||_{k,p} = \left(\int_{\Omega}\sum_{|i|\leq k} |D^{i}u|^{p}dx\right)^{1/p},$$

where the usual notation

$$D^{i} = \frac{\partial^{|i|}}{\partial x_{1}^{i_{1}} \cdot \cdot \cdot \partial x_{n}^{i_{n}}}$$

is introduced. The functions $a_i(x, \xi)$ are supposed to satisfy the growth-conditions:

(1.1) $|a_i(x,\xi)| \leq c(1+|\xi|).$

Let functions $u_0 \in W_2^{(k)}(\Omega)$ and $f_i \in L_2(\Omega)$, $|i| \leq k$, be given. Let $\mathring{W}_p^{(k)}(\Omega)$ be the closure of $D(\Omega)$, the space of infinitely differentiable functions with compact support, in the space $W_p^{(k)}(\Omega)$.

A function u from $W_2^{(k)}(\Omega)$ is called a weak solution of the Dirichlet problem: $\partial^l u/\partial n^l = \partial^l u_0/\partial n^l$ on $\partial\Omega$, $l=0, 1, \dots, k-1$, (where $\partial/\partial n$ is the derivative with respect to the outer normal),

$$\sum_{|i| \le k} (-1)^{|i|} D^i(a_i(x, \xi(u))) = \sum_{|i| \le k} (-1)^{|i|} D^i f_i \quad \text{in } \Omega$$

(where the components of $\xi(u)$ are $D^{j}u$) if

- (1.2) $u u_0 \in \mathring{W}_2^{(k)}(\Omega)$,
- (1.3) for every v in $\mathring{W}_{2}^{(k)}(\Omega)$:

$$\int_{\Omega} \sum_{|i| \leq k} D^{i} v a_{i}(x, \xi(u)) dx = \int_{\Omega} \sum_{|i| \leq k} D^{i} v f_{i} dx.$$

Copyright © 1971, American Mathematical Society