CURVATURE AND DIFFERENTIABLE STRUCTURE ON SPHERES¹

BY ERNST A. RUH

Communicated by S. Sternberg, July 2, 1970

1. Introduction. The purpose of this note is to outline a proof of the following result: A simply connected, complete, riemannian manifold whose curvature tensor R is sufficiently close to the curvature tensor R_0 of the standard sphere S of the same dimension is diffeomorphic to S. Traditionally, the proximity of R and R_0 has been measured in terms of the sectional curvature as follows: A riemannian manifold is called δ -pinched if the sectional curvature K satisfies the condition $\delta < K \leq 1$. Using this concept, Gromoll [4] and Calabi proved the following diffeomorphism theorem: There exists a sequence δ_n with $\lim \delta_n = 1$ as n increases such that a δ_n -pinched simply connected riemannian manifold M of dimension n is diffeomorphic to the sphere S^n .

In order to express the main condition of the diffeomorphism theorem independently of dimension, we introduce a different measurement for the proximity of the curvature tensors R and R_0 of the manifolds M and S^n respectively. To formulate this condition we think of the riemannian curvature tensor as a selfadjoint, linear map $R: V \land V \rightarrow V \land V$, where $V \land V$ denotes the exterior product of the tangent space with itself. A riemannian manifold is called *strongly* δ -*pinched*, if the eigenvalues λ of the above linear map at every point of M satisfy the condition $\delta < \lambda \leq 1$.

2. Statement of result. In previous studies the pinching constant depended on the dimension of the manifold. However, the introduction of strong δ -pinching has the following advantage: The constant δ in the theorem below is independent of the dimension of the manifold.

THEOREM. There exists a constant $\delta \neq 1$ such that a complete, simply connected, strongly δ -pinched riemannian manifold is diffeomorphic to the standard sphere of the same dimension.

AMS 1969 subject classifications. Primary 5372.

Key words and phrases. Alexandrov-Rauch-Toponogoff comparison theorem, δ -pinching, Gauss map, Morse theory, strong δ -pinching.

¹ Research supported by NSF Grant No. GP 20628.