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1. Relationships between methods of convergences and the growth 
of coefficients. It was shown by Paul J. Cohen [l] that if a multiple 
trigonometric series converges regularly at almost every point of the 
&-torus 2nfc=[—7T, 7r]X • • • X [—7T, 7r], then its coefficients an 

=ani,...fnib cannot exhibit exponential growth. A particular form of 
regular convergence is square convergence. Consideration of double 
series of the form 
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shows that Cohen's seemingly gross estimates cannot be improved. 
For by a suitable choice of the <f>{n) the series may be made square 
convergent almost everywhere while having coefficients which grow 
faster than any given sequence whose growth is less than exponential. 

THEOREM 1. If a multiple trigonometric series converges unrestrict
edly rectangularly on a set, then the coefficients are necessarily bounded; 
furthermore, an^arn,...,^—*0 as min{\ni\, • • • , \nic\ } =||n||—»oo. 

Again this theorem is best possible. The proof is by induction and 
makes use of 

LEMMA 1. If a polynomial P(eix) of degree n is bounded for all 
x(EE(Z [O, 2w) by a bound B, where \E\ —Lebesgue measure of E = ô>0, 
then there is a number c = c(ô, n) such that \ P(eix) \ Scfor every x. 

The lemma is an easy consequence of the Lagrange interpolation 
formula and a lemma of Paul Cohen's [l, p. 41 ]. Another consequence 
of Lemma 1 is 
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