CONVERGENCE, SUMMABILITY, AND UNIQUENESS OF MULTIPLE TRIGONOMETRIC SERIES

BY J. MARSHALL ASH ${ }^{1}$ AND GRANT V. WELLAND ${ }^{2}$

Communicated by Paul J. Cohen, August 25, 1970

1. Relationships between methods of convergences and the growth of coefficients. It was shown by Paul J. Cohen [1] that if a multiple trigonometric series converges regularly at almost every point of the k-torus $T^{k}=[-\pi, \pi] \times \cdots \times[-\pi, \pi]$, then its coefficients a_{n} $=a_{n_{1}, \cdots, n_{k}}$ cannot exhibit exponential growth. A particular form of regular convergence is square convergence. Consideration of double series of the form

$$
\sum_{n=1}^{\infty} \phi(n)(1-\cos x)^{n} e^{i n y}
$$

shows that Cohen's seemingly gross estimates cannot be improved. For by a suitable choice of the $\phi(n)$ the series may be made square convergent almost everywhere while having coefficients which grow faster than any given sequence whose growth is less than exponential.

Theorem 1. If a multiple trigonometric series converges unrestrictedly rectangularly on a set, then the coefficients are necessarily bounded; furthermore, $a_{n}=a_{n_{1}, \cdots, n_{k} \rightarrow 0}$ as $\min \left\{\left|n_{1}\right|, \cdots,\left|n_{k}\right|\right\}=\|n\| \rightarrow \infty$.

Again this theorem is best possible. The proof is by induction and makes use of

Lemma 1. If a polynomial $P\left(e^{i x}\right)$ of degree n is bounded for all $x \in E \subset[0,2 \pi)$ by a bound B, where $|E|=$ Lebesgue measure of $E=\delta>0$, then there is a number $c=c(\delta, n)$ such that $\left|P\left(e^{i x}\right)\right| \leqq c$ for every x.

The lemma is an easy consequence of the Lagrange interpolation formula and a lemma of Paul Cohen's [1, p. 41]. Another consequence of Lemma 1 is

[^0]
[^0]: AMS 1970 subject classifications. Primary 42A92, 42A48, 42A20, 42A24, 40B05: Secondary 40G10, 40A05, 40D15.

 Key words and phrases. Square summable, unrestrictedly rectangularly convergent, spherically Abel summable, $C(0, \beta)$ summable, uniqueness, coefficient growth, Riemann summable.
 ${ }^{1}$ Research partially supported by NSF Grant GP 14986.
 ${ }^{2}$ Research partially supported by NSF Grant GP 9123.

