TRANSLATION-INVARIANT LINEAR FORMS AND A FORMULA FOR THE DIRAC MEASURE

BY GARY H. MEISTERS¹

Communicated by Peter D. Lax, July 27, 1970

Following Schwartz [2] we denote by D, \mathcal{E} and \mathcal{E} the complex vector spaces of all complex-valued infinitely differentiable functions ϕ on \mathbb{R}^n where the functions of D have compact supports, the functions of \mathcal{E} have arbitrary supports, and the functions of \mathcal{E} (along with all their derivatives) are rapidly decreasing at infinity. We equip each of these spaces with its usual locally convex topology. These spaces and their duals D', \mathcal{E}' and \mathcal{E}' are translation-invariant in the sense that the translated function (or distribution) $\phi_h(t) \equiv \phi(t-h)$ belongs to the space whenever ϕ does. We say that a (not necessarily continuous) linear form L on any of these spaces is "translation-invariant" if $L(\phi_h) = L(\phi)$ for all ϕ in the domain space and for all h in \mathbb{R}^n . It is, of course, well known what the *continuous* translation-invariant linear forms on these spaces are like; namely, they are either identically zero or a constant multiple of integration over \mathbb{R}^n .

The purpose of this paper is to announce that there exists no discontinuous translation-invariant linear form on any of the six spaces $\mathfrak{D}, \mathfrak{E}, \mathfrak{S}, \mathfrak{D}', \mathfrak{E}'$ or \mathfrak{S}' . That is, integration over \mathbb{R}^n in the spaces $\mathfrak{D}, \mathfrak{S}$ and \mathfrak{E}' can be characterized (up to a multiplicative constant) simply as a translation-invariant linear form. Furthermore, we obtain this result as a simple consequence of a resolution of the first derivative of the Dirac measure δ (on the real line \mathbb{R}) into a sum of two finite differences of distributions of compact support. We state this as our main result.

THEOREM 1. If α and β are nonzero real numbers such that α/β is irrational and not a Liouville transcendental, then there exist two (necessarily distinct) distributions S and T on R, both with compact

AMS 1970 subject classifications. Primary 46F10, 39A05, 46H10; Secondary 10F25, 42A68, 28A30.

Key words and phrases. Infinitely differentiable functions, translation-invariant linear forms, Dirac measure, distributions with compact supports, finite differences, algebraic irrationals, convolution, tensor product, entire functions, Paley-Wiener-Schwartz Theorem, Fourier transforms, Liouville transcendental.

¹ This research was supported in part by NSF Grant GP-11605.

Copyright © 1971, American Mathematical Society