THE REDUCIBILITY OF THOM COMPLEXES AND SURGERY ON MAPS OF DEGREE d

BY MAX K. AGOSTON

Communicated by N. E. Steenrod, July 27, 1970

1. Statement of results. In this paper we announce a substantial extension of the obstruction theory developed in [1]. Detailed proofs and further properties will appear elsewhere. Basically what we have accomplished is to put the theory in [1] in a more natural setting and extend it to the metastable range. We also apply it to the question of when the Thom complex $T(\xi)$ of a vector bundle ξ over a manifold is reducible and hence get an obstruction theory for imbedding 1-connected manifolds in the metastable range.

All manifolds will be oriented, compact, and differentiable. Bundles are also assumed to be oriented. Let θ^q denote the trivial *q*-plane bundle over a space and set $\pi_{r,t} = \pi_r S^{r-t}$.

THEOREM 1 (THE REDUCIBILITY THEOREM). Let ξ^k be a k-plane bundle over a closed connected manifold M^n and assume $2k \ge n+3$. Then

(a) The Thom complex $T(\xi \oplus \theta^1)$ is reducible whenever a sequence of obstructions $o_i(\xi) \in H^i(M; \pi_{n+k,i-1}), 1 < i \leq n$, vanishes. In the stable range, $k \geq n+3$, the converse is also true, namely, the reducibility of $T(\xi \oplus \theta^1)$ implies the vanishing of the obstructions $o_i(\xi)$.

(b) Let $s_*: H^i(M; \pi_{n+k,i-1}) \to H^i(M; \pi_{n+k+1,i-1})$ be the homomorphism induced by the suspension homomorphism $\pi_{n+k,i-1} \to \pi_{n+k+1,i-1}$. Then $s_*(o_i(\xi)) = o_i(\xi \oplus \theta^1)$.

Next, let $G_{r,t}$ denote the kernel of the suspension homomorphism $\pi_{r,t} \rightarrow \pi_t^s = \lim_{q \rightarrow \infty} \pi_{r+q,t}$ and let $G_{r,t}^q$, for $q \leq r$, be the subgroup of those elements in $G_{r,t}$ which lie in the image of the suspension homomorphism $\pi_{q,t} \rightarrow \pi_{r,t}$. Then $G_{r,t}^q \subseteq G_{r,t} \subseteq \pi_{r,t}$.

Combining Theorem 1 with [6], we get:

THEOREM 2 (THE IMBEDDING THEOREM). Let M^n be a 1-connected closed manifold that immerses in S^{n+k} with normal bundle ξ^k , where $n \ge 5$

AMS 1970 subject classifications. Primary 55G35, 57D65; Secondary 57D40.

Key words and phrases. Thom complexes, reducibility, obstructions, imbeddings, π -manifolds, metastable range, surgery, maps of degree d, splittings, complete splittings.