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1. Introduction. This note is an announcement of results concern­
ing the local deformation theory of subgroups of a Lie group. Let G be 
a real (resp. complex) Lie group and let M be a real (resp. complex)-
analytic manifold. Roughly speaking, an analytic family of Lie sub­
groups of G, parametrized by M, is an analytic submanifold 3C of 
GXM such that each "fibre" Ht (tGM) is a Lie subgroup of G; here 
the "fibre" Ht is defined by JCH(GX {t})=HtX {/}. (See §2 for a 
precise definition of an analytic family of Lie subgroups.) Our main 
result concerning such families is 

THEOREM A. Let X = (Ht)tsM be an analytic family of Lie subgroups 
of G, let toÇzM and let H = HtQ. Let K be a Lie subgroup of H such that 
the component group K/K° is finitely generated and such that the Lie 
group cohomology space Hl(K, Q/Ï)) vanishes. Then there exists an open 
neighborhood U of to in M and an analytic map j8: U-+G such that 
KQP(t)HtP(t)~lfor every tE U. 

Here g (resp. Ï)) denotes the Lie algebra of G (resp. H) and the 
üT-module structure of g/ï) is determined by the adjoint representa­
tion of K on g. 

Theorem A generalizes the result of A. Weil [6, p. 152] which states 
that if T is a discrete, finitely generated subgroup of G such that 
fPÇT, ô) =0, then V is "rigid". It also generalizes results of the author 
[4], [5] on deformations of subalgebras of Lie algebras to the case of 
Lie subgroups. The proof of Theorem A depends heavily on the 
analyticity assumptions, although we suspect that the C00 version of 
the theorem is also true. 

If G acts as an analytic transformation group on the analytic mani­
fold M and if all orbits of G on M have the same dimension, then it 
can be shown that the connected isotropy groups (G°t)teM form an 
analytic family of Lie subgroups of G, and hence Theorem A applies. 
For example, let K be a maximal compact subgroup of G?. Then 
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