AN ALGEBRA OF GENERALIZED FUNCTIONS ON AN OPEN INTERVAL; TWO-SIDED OPERATIONAL CALCULUS

BY GREGERS KRABBE

Communicated by Philip Hartman, July 23, 1970

Let Ω be an open subinterval of the real line; suppose that $0 \in \Omega$. The purpose of this announcement is to describe an injection of $L^{loc}(\Omega)$ into a commutative algebra of operators. The injection is a useful substitute for the two-sided Laplace transformation; in case Ω is the whole real line, the injection can be extended to a space \mathfrak{B} of distributions whose supports may be all of $(-\infty, \infty)$ (there are no growth restrictions: see §7). If the distributional derivative of an arbitrary distribution R belongs to the space \mathfrak{B} , then R also belongs to \mathfrak{B} and R has an initial value (because R equals a continuous function in some left-neighborhood of the origin). Thus, it is possible to assign initial conditions to the unknown distribution in a differential equation whose right-hand side belongs to the space \mathfrak{B} : see 7.3.

1. Preliminaries. If $f_1()$ and $f_2()$ belong to the space $L^{loc}(\Omega)$ (of all the complex-valued functions which are integrable on each compact subinterval of the open set Ω), we denote by $f_1 \wedge f_2()$ the function defined by

$$(1.1) f_1 \wedge f_2(t) = -\int_1^0 f_1(t-u)f_2(u)du (for all t in \Omega).$$

- 2. The space of test-functions. Let $W\Omega$ be the space of all the complex-valued functions which are infinitely differentiable on Ω and whose every derivative vanishes at the origin. Thus, $w(\)$ belongs to $W\Omega$ if $w(\) \in C^{\infty}(\Omega)$ and $w^{(k)}(0) = 0$ for every integer $k \ge 0$.
- 2.1. The space of generalized functions. Let $\alpha\Omega$ be the space of all the linear operators A which map $W\Omega$ into $W\Omega$ such that the equation

AMS 1970 subject classifications. Primary 44A40, 44A35, 42A76; Secondary 46F99, 34A10, 45A05.

Key words and phrases. Generalized functions, operational calculus, direct sums of algebras, Schwartz distributions, initial-value problems, two-sided Laplace transformation, Fourier transformation, Mikusiński operational calculus, operateurs de Heaviside, translation properties, initial values, Dirac distributions, distributional derivative.