ON THE AVERAGE ORDER OF IDEAL FUNCTIONS AND OTHER ARITHMETICAL FUNCTIONS

BY BRUCE C. BERNDT

Communicated by Paul T. Bateman, July 15, 1970

Abstract

We consider a large class of arithmetical functions generated by Dirichlet series satisfying a functional equation with gamma factors. We state a general O-theorem for the average order of these arithmetical functions and apply the result to ideal functions of algebraic number fields.

Landau [4] and Chandrasekharan and Narasimhan [3] have proved O-theorems for the average order of a large class of arithmetical functions. The method of proof uses finite differences and is due to Landau. Often, it is desired to have an O-theorem where the error term is a function of a certain parameter, which is the discriminant, for example, in the case of an algebraic number field. We state here a general O-theorem of this type. The method of proof is a slight modification of Landau's mentioned above.

We briefly indicate the arithmetical functions under consideration. For a more complete description see [3].

Let $\{a(n)\}$ and $\{b(n)\}$ be two sequences of complex numbers not identically zero. Let $\left\{\lambda_{n}\right\}$ and $\left\{\mu_{n}\right\}$ be two strictly increasing sequences of positive numbers tending to ∞. Put $s=\sigma+i t$ with σ and t both real. We assume that

$$
\varphi(s)=\sum_{n=1}^{\infty} a(n) \lambda_{n}^{-s} \quad \text { and } \quad \psi(s)=\sum_{n=1}^{\infty} b(n) \mu_{n}^{-s} ;
$$

each converge in some half-plane and satisfy the functional equation

$$
\Delta(s) \varphi(s)=\Delta(r-s) \psi(r-s),
$$

where r is real and

$$
\Delta(s)=\prod_{v=1}^{N} \Gamma\left(\alpha_{\nu} s+\beta_{v}\right),
$$

where $\alpha_{\nu}>0$ and β_{ν} is complex, $\nu=1, \cdots, N$.
In the sequel A always denotes a positive number not necessarily the same with each occurrence.

[^0]
[^0]: AMS 1969 subject classifications. Primary 1043, 1065; Secondary 1041.
 Key words and phrases. Functional equation with gamma factors, arithmetical function, ideal function, average order, error term.

