ONE-PARAMETER SEMIGROUPS OF ISOMETRIES

BY C. A. BERGER AND L. A. COBURN

Communicated by I. M. Singer, March 2, 1970

Let $t \rightarrow V_t$ for $t \ge 0$ be a strongly continuous one-parameter semi-group of isometries on a Hilbert space H. The easiest example of such a semigroup which is not unitary is given by considering the Hilbert space $\tilde{H} = L^2(0, \infty)$ consisting of those Lebesgue square-integrable functions on $(-\infty, \infty)$ which are supported on $(0, \infty)$. On \tilde{H} , we consider the (nonunitary) isometries

$$(T_t f)(x) = f(x - t).$$

Recently, the C^* -algebra $\mathfrak{C}(T_t:t\geq 0)$ generated by the semigroup $t\rightarrow T_t$ has been studied in detail [2], [3], [4].

In this note, we show that for any strongly continuous one-parameter semigroup of isometries $t \to V_t$ with V_{t_0} not unitary for some t_0 , $\mathfrak{C}(V_t; t \ge 0)$ is *-isomorphic with $\mathfrak{C}(T_t; t \ge 0)$. The proof is modelled after the corresponding result for C^* -algebras generated by a single isometry [1].

The main fact that we use is a generalization due to Cooper [6, p. 142] of the Wold decomposition of a single isometry [5, p. 109]. This generalization states that for $t \rightarrow V_t$, $t \ge 0$, a strongly continuous one-parameter semigroup of isometries on H, there is a Hilbert space K with a strongly continuous one-parameter unitary semigroup $t \rightarrow U_t$ on K, there is a cardinal α , and there is an isometry U from H onto $K \oplus \tilde{H} \oplus \cdots \oplus \tilde{H} \oplus \cdots$ where \tilde{H} occurs with multiplicity α , such that

$$UV_tU^* = U_t \oplus T_t \oplus \cdots \oplus T_t \oplus \cdots$$

The multiplicity α is a unitary invariant which can be read off from the infinitesimal generator of $t \rightarrow V_t$ [6, p. 142].

In case $K = \{0\}$, we say that $t \rightarrow V_t$ is purely nonunitary [6, p. 136]. For such semigroups, the multiplicity α is the only unitary invariant. A very general way of generating such semigroups is to consider for any measure $d\mu$ which is positive, of bounded variation, and singular with respect to Lebesgue measure on the unit circle T, the singular inner functions [5, p. 66] $\phi_t^{\mu}(e^{i\theta})$ which are the boundary values of

AMS 1969 subject classifications. Primary 4665, 4750.

Key words and phrases. C*-algebras, semigroups of operators.