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The aim of this note is to prove the statement in the title which is 
the natural generalization of the classical theorem of N. Lusin for 
separable metrizable spaces; for historical remarks and classical proof 
see K. Kuratowski [9, §28]. 

If P is a topological space we let Baire (P) denote the set P en
dowed with the <7-algebra of all Baire sets in P . Recall that the collec
tion of Baire sets in P is the smallest cr-algebra of sets such that each 
real valued continuous function is measurable. A mapping ƒ :P—>Q of 
topological spaces is called Baire measurable or simply measurable, if 
jf:Baire(P)—»Baire (Q) is measurable. A mapping ƒ :P—*(? of measur
able spaces is called quotient if ƒ is surjective measurable mapping 
such that XQQ is measurable if jT"""1 [-X"] is measurable. Now we are 
prepared to state our main result; the reader may also read an inter
esting corollary in Theorem 9 below. 

THEOREM 1. Let f be a Baire measurable mapping of an analytic 
topological space A into a metrizable space M. Then the graph p of ƒ, and 
Q =ƒ [P] , are analytic, and the mapping f \ A—>Q is a measurable quotient 
mapping. 

I t should be remarked that Theorem 1 is highly non trivial, and that 
we need the whole machinary of analytic spaces theory for the proof. 
Recall that a separated space A is called analytic if there exists an 
upper semicontinuous compact valued (abbreviated to usco-compact) 
correspondence of the space S of irrational numbers onto A. Thus for 
completely regular spaces the analytic spaces are just the X-analytic 
spaces introduced by G. Choquet [2], [3]. In this note we will work 
in the class of all completely regular spaces, and the reader familiar 
with [ó] will observe immediately that Theorem 1 holds for analytic 
spaces as defined in [6] for general topological spaces. For the 
convenience of the reader we summarize all requisite facts about 
analytic spaces. 
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