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1. Preliminaries. The purpose of this note is to state extensions of
the results given in [2] for g-fractions. These extensions will be useful
for a unification of the theory of inclusion regions for continued
fractions associated with certain Hilbert transforms
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For related results see [1], [3], and [4].

For — o <a<b< -+« let W(a, b) denote the class of nonrational
real analytic functions f(z) which are holomorphic for z € comp|[a, 5]
and which satisfy Re[((z—a)(z—b))1/%f(2) |>0 in this domain. The
principal branch of the square root is assumed.

THEOREM 1. The following alternative characterizations of the class
W(a, b) arevalid:

(a) fEW(a, b) if and only if there is a bounded nondecreasing function
o, with infinitely many points of increase, such that

o= [ 70, e compla,sl;

(b) fFEW(a, b) if and only if f has a (unique) w-fraction expansion
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2. Inclusion regions. The first inclusion theorem is a consequence
of Theorem 1(a).

THEOREM 2. If fEW(a, b) and z is nonreal then f(2) is contained in
the open convex sector K_1(2) bounded by the rays
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