TRUNCATION ERROR BOUNDS FOR π -FRACTIONS

BY W. B. GRAGG¹

Communicated by Eugene Isaacson, April 13, 1970

1. Preliminaries. The purpose of this note is to state extensions of the results given in [2] for g-fractions. These extensions will be useful for a unification of the theory of inclusion regions for continued fractions associated with certain Hilbert transforms

$$f(z) = \int_{-\infty}^{+\infty} \frac{d\sigma(t)}{z - t} \, \cdot$$

For related results see [1], [3], and [4].

For $-\infty < a < b < +\infty$ let W(a, b) denote the class of nonrational real analytic functions f(z) which are holomorphic for $z \in \text{comp}[a, b]$ and which satisfy $\text{Re}[((z-a)(z-b))^{1/2}f(z)] > 0$ in this domain. The principal branch of the square root is assumed.

THEOREM 1. The following alternative characterizations of the class W(a, b) are valid:

(a) $f \in W(a, b)$ if and only if there is a bounded nondecreasing function σ , with infinitely many points of increase, such that

$$f(z) = \int_a^b \frac{d\sigma(t)}{z-t}, \quad z \in \text{comp}[a, b];$$

(b) $f \in W(a, b)$ if and only if f has a (unique) π -fraction expansion

(1)
$$f(z) = \frac{\pi_0}{|z-b|} + \frac{b-a}{1} + \frac{\pi_1(z-a)}{|z-b|} + \frac{b-a}{|z-b|} + \frac{\pi_2(z-a)}{|z-b|} + \cdots, \quad z \in \text{comp}[a,b],$$

with $\pi_n > 0$, $n \ge 0$.

2. Inclusion regions. The first inclusion theorem is a consequence of Theorem 1(a).

THEOREM 2. If $f \in W(a, b)$ and z is nonreal then f(z) is contained in the open convex sector $K_{-1}(z)$ bounded by the rays

AMS 1969 subject classifications. Primary 40XX, 12XX.

Key words and phrases. Continued fractions, Stieltjes summation, classical moment problems, orthogonal polynomials.

¹ Research sponsored by National Science Foundation Grant GP-9304.