ON THE SUZUKI AND CONWAY GROUPS

BY J. H. LINDSEY II

Communicated by Michio Suzuki, February 24, 1970

The Suzuki and Conway groups were constructed from the sixdimensional complex representation of a central extension of Z_6 by $PSU_4(3)$ in [2]. In fact, if Q is the rational number field, $\sqrt{-3} = \sqrt{3}i = w - \bar{w}$, $w = (-1 + \sqrt{3}i)/2$, and $w^3 = 1$, then the following unitary matrices M_1, \dots, M_6 generate a central extension H of Z_6 by the Suzuki group of order $2^{13}3^75^27(11)(13)$:

$$M_{1} = \frac{1}{\sqrt{(-3)}} \left[\begin{pmatrix} 1 & 1 & 1 \\ 1 & w & \bar{w} \\ 1 & \bar{w} & w \end{pmatrix} \oplus \begin{pmatrix} -1 & -1 & -1 \\ -1 & -\bar{w} & -w \\ -1 & -w & -\bar{w} \end{pmatrix} \\ \oplus \begin{pmatrix} -\bar{w} & -w & -1 \\ -w & -\bar{w} & -1 \\ -1 & -1 & -1 \end{pmatrix} \oplus \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & \bar{w} \\ 1 & \bar{w} & w \end{pmatrix} \right],$$

 $M_2 = \operatorname{diag}(w, w, w, w, w, w, w, \bar{w}, \bar{w}, \bar{w}, \bar{w}, \bar{w}).$

The following denote permutation matrices where our 12 variables are $x_1, \dots, x_6, x_{1'}, \dots, x_{6'}$.

$M_3 = (1$	2	3)(1'	2′	3')(4'	5'	6′),
$M_4 = (4$	5	6)(1′	2′	3')(4'	6′	5′),
$M_{5} = (1$	2	6)(4′	3'	2')(1'	6′	5′),
$M_{6} = (1$	2	1')(5	4′	4)(6	5′	6′).

A lattice \pounds fixed by H can be defined in terms of the following partitions $\{1, \dots, 6'\} = S_i \cup C(S_i), i=1, 11$. These partitions are permuted by the above permutation matrices:

$$S_{1} = \{1, 2, 3, 4, 5, 6\},\$$

$$S_{2} = \{1, 2, 3, 1', 2', 3'\},\$$

$$S_{3} = \{1, 2, 4, 2', 4', 5'\},\$$

$$S_{4} = \{1, 2, 5, 3', 4', 6'\},\$$

AMS 1969 subject classifications. Primary 2072, 2075; Secondary 2025, 2029. Key words and phrases. Leech lattice, Conway group, Suzuki group.