THE INEQUALITY OF SQPS AND QSP AS OPERATORS ON CLASSES OF GROUPS

BY PETER M. NEUMANN
Communicated by Oscar Goldman, January 19, 1970

Some years ago Evelyn Nelson asked, as a special case of a question of wider interest in universal algebra, whether if \mathfrak{X} is a class of groups it is always the case that sQps $\mathfrak{X}=$ QSP \mathfrak{X} (see [10], [11, Problem 3], [2] and [4, p. 161]). Here $s \mathfrak{X}$ is the class of groups isomorphic to subgroups of groups in \mathfrak{X}; $\mathbb{Q} \mathfrak{X}$ is the class of groups isomorphic to factor groups of groups in \mathfrak{X}; and $\mathrm{P} \mathfrak{X}$ is the class of groups isomorphic to cartesian products of families of groups in \mathfrak{X}. My aim is to indicate a proof that, if $\mathrm{SL}(2, q)$ is the group of 2 by 2 matrices of determinant 1 with entries from the field $\mathrm{GF}(q)$ of q elements, and $\mathfrak{X}=\left\{G \mid G \simeq \operatorname{SL}\left(2,2^{m}\right), m \geqq 2\right\}$, then SQPS $\mathfrak{X} \neq \mathrm{QSP} \mathfrak{X}$.

The proof uses two special properties of the groups $\operatorname{SL}\left(2,2^{m}\right)$.
Fact 1 (cf. [3, Chapter 12], or [7, Kap.II, §8]). If X is a subgroup of $\operatorname{SL}\left(2,2^{m}\right)$ then either $X \simeq \operatorname{SL}\left(2,2^{l}\right)$ for some divisor l of m, or $X \in \mathfrak{Y}^{2}$, the class of metabelian groups. In fact, if X is not of the form $\mathrm{SL}\left(2,2^{l}\right)$, then one knows that X is cyclic, or dihedral or a subgroup of the 1 -dimensional affine group over $\operatorname{GF}\left(2^{m}\right)$, but all we shall need is that such groups are metabelian.

Fact 2. If $m \geqq 2$ then $\operatorname{SL}\left(2,2^{m}\right)$ is simple. Moreover, there is an integer k such that for all m and all $g, h \in \operatorname{SL}\left(2,2^{m}\right)$ with $g \neq 1, h$ can be written as a product of exactly k conjugates of g. Here k may be taken to be 12 , and the proof is a straightforward calculation.

A crucial consequence of Fact 2 is that if $X=\prod_{I} S_{i}$, where $S_{i} \in \mathbb{X}$ for all $i \in I$, and if $g \in X$ then the normal closure of g is given by

$$
\langle g\rangle^{\boldsymbol{X}}=\Pi\left\{S_{i} \mid i \in \operatorname{supp}(g)\right\} \leqq X
$$

where $\operatorname{supp}(g)=\{i \in I \mid g(i) \neq 1\}$. It follows easily that if $N \triangleleft X$ and $X=\{E \subseteq I \mid E=\operatorname{supp}(g)$ for some $g \in N\}$, then ε is an ideal (cf. [4]) in the boolean algebra of subsets of I and $N=N_{\varepsilon}=\{g \in X \mid \operatorname{supp}(g) \in \varepsilon\}$. Therefore X / N is a reduced product (cf. [4, p. 144], or [1, p. 210]) of the groups S_{i}. Also

$$
N=N_{\varepsilon}=\cap\left\{N_{\mathfrak{N}} \mid \varepsilon \subseteq \mathscr{N} \text { and } \mathscr{N} \text { a maximal ideal on } I\right\}
$$

[^0]
[^0]: AMS 1969 subject classifications. Primary 2008, 0830.
 Key words and phrases. SQPS \& QSP, classes of groups, SQPS as operator, SQP as operator, operators on classes, general algebraic systems.

