RESEARCH PROBLEMS

The Research Problems department of the *Bulletin* has been discontinued. This final offering consists of recently rediscovered problems and solutions submitted before the closing of the department.

PROBLEMS.

1. Richard Bellman. Orthogonal series

Let $\{u_n(x)\}$ be an orthonormal sequence over the interval [a, b] with the continuous, positive weight function p(x). Let f(x) be a continuous positive function in [a, b] and let $f(x) \sim \sum_{n=1}^{N} a_n u_n(x)$. Does there exist a summability matrix (s_{nm}) such that $\sigma_N = \sum_{n=1}^{N} s_{nN} a_n u_n(x)$ converges to f(x) as $N \to \infty$ and $\sigma_N(x) \ge 0$ for $N \ge 1$, $a \le x \le b$?

2. Richard Bellman. Differential equations

Let m_i , $i = 1, 2, \dots, N$ be moments of a distribution, i.e., $m_i = \int_a^b x^i dG(x)$, $dG \ge 0$. Consider the linear system $dx_i/dt = \sum_{j=1}^N a_{ij}x_j$, $x_i(0) = m_i$. What are necessary and sufficient conditions on the matrix $A = (a_{ij})$ so that the $x_i(t)$, $i = 1, 2, \dots, N$, are moments for $t \ge 0$?

3. Richard Bellman. Approximation of functions

Let k(x, y) be a continuous function of x and y in the square $0 \le x, y \le 1$. Determine the minimum of $J(f, g) = \int_0^1 f(x) dx + \int_0^1 g(y) dy$, $k(x, y) \le f(x) + g(y)$. Consider the case where k(x, y) is symmetric in x and y, and we ask that f = g.

Generalize both to the multidimensional case where

$$k(x_1, x_2, \dots, x_N) \leq f(x_1, x_2, \dots, x_k) + g(x_{k+1}, x_{k+2}, \dots, x_N),$$

and to the case where J(f, g) is a more general functional.

Consider the case where $k(x_1, x_2, x_3)$ is symmetric in x_1, x_2, x_3 , and we ask for the minimum of $\int_0^1 \int f(x_1, x_2) dx_1 dx_2$ subject to the condition that $k(x_1, x_2, x_3) \leq f(x_1, x_2) + f(x_1, x_3) + f(x_3, x_1)$ and $f(x_1, x_2)$ is symmetric in x_1 and x_2 .

Is there a systematic procedure for solving problems of this type involving the minimization of J(g) where $f(p) \leq g(p)$ and g is invariant under a group of operations?

4. George Brauer. The L^p conjecture for a finitely additive measure

Let $s = \{s_n\}$ be a sequence and let a point ρ_0 in I be fixed, where I is the unit interval [0, 1) and the symbol X denotes the Stone-Cech