ON THE AVERAGE ORDER OF SOME ARITHMETICAL FUNCTIONS

BY BRUCE C. BERNDT¹

Communicated by Paul T. Bateman, February 3, 1970

ABSTRACT. We consider a large class of arithmetical functions generated by Dirichlet series satisfying a functional equation with gamma factors. Our objective is to state some Ω results for the average order of these arithmetical functions.

Our objective here is to state some Ω -theorems on the average order of a class of arithmetical functions.

We indicate very briefly the class of arithmetical functions under consideration. For a more complete description, see [4].

Let $\{a(n)\}$ and $\{b(n)\}$ be two sequences of complex numbers, not identically zero. Let $\{\lambda_n\}$ and $\{\mu_n\}$ be two strictly increasing sequences of positive numbers tending to ∞ . Put $s = \sigma + it$ with σ and t both real and suppose that

$$\phi(s) = \sum_{n=1}^{\infty} a(n)\lambda_n^{-s}$$
 and $\psi(s) = \sum_{n=1}^{\infty} b(n)\mu_n^{-s}$

each converge in some half-plane. Let σ_a^* denote the abscissa of absolute convergence of ψ . Put

$$\Delta(s) = \prod_{\nu=1}^{N} \Gamma(\alpha_{\nu}s + \beta_{\nu}),$$

where $\alpha_r > 0$ and β_r is complex, $\nu = 1, \dots, N$. Assume that for sone real number r, ϕ and ψ satisfy the functional equation $\Delta(s)\phi(s) = \Delta(r-s)\psi(r-s)$.

We shall consider the Riesz sum

$$A_q(x) = \frac{1}{\Gamma(q+1)} \sum_{\lambda_n \leq x} a(n) (x-\lambda_n)^q,$$

where $q \ge 0$. Let $\alpha = \sum_{\nu=1}^{N} \alpha_{\nu}$ and define

$$Q_q(x) = \frac{1}{2\pi i} \int \frac{\Gamma(s)\phi(s)x^{s+q}}{c_q \Gamma(s+q+1)} \, ds,$$

AMS Subject Classifications. Primary 1043; Secondary 1040, 1041.

Key Words and Phrases. Arithmetical function, functional equation with gamma factors, Dirichlet series, average order.

¹ Research partially supported by NSF Grant # GP-7506.