ON THE AVERAGE ORDER OF SOME ARITHMETICAL FUNCTIONS

BY BRUCE C. BERNDT ${ }^{1}$
Communicated by Paul T. Bateman, February 3, 1970

> Abstract. We consider a large class of arithmetical functions generated by Dirichlet series satisfying a functional equation with gamma factors. Our objective is to state some Ω results for the average order of these arithmetical functions.

Our objective here is to state some Ω-theorems on the average order of a class of arithmetical functions.
We indicate very briefly the class of arithmetical functions under consideration. For a more complete description, see [4].

Let $\{a(n)\}$ and $\{b(n)\}$ be two sequences of complex numbers, not identically zero. Let $\left\{\lambda_{n}\right\}$ and $\left\{\mu_{n}\right\}$ be two strictly increasing sequences of positive numbers tending to ∞. Put $s=\sigma+i t$ with σ and t both real and suppose that

$$
\phi(s)=\sum_{n=1}^{\infty} a(n) \lambda_{n}^{-s} \text { and } \psi(s)=\sum_{n=1}^{\infty} b(n) \mu_{n}^{-s}
$$

each converge in some half-plane. Let σ_{a}^{*} denote the abscissa of absolute convergence of ψ. Put

$$
\Delta(s)=\prod_{v=1}^{N} \Gamma\left(\alpha_{v} s+\beta_{v}\right),
$$

where $\alpha_{\nu}>0$ and β_{ν} is complex, $\nu=1, \cdots, N$. Assume that for sone real number r, ϕ and ψ satisfy the functional equation $\Delta(s) \phi(s)$ $=\Delta(r-s) \psi(r-s)$.

We shall consider the Riesz sum

$$
A_{q}(x)=\frac{1}{\Gamma(q+1)} \sum_{\lambda_{n} \leqslant x} a(n)\left(x-\lambda_{n}\right)^{q},
$$

where $q \geqq 0$. Let $\alpha=\sum_{o=1}^{N} \alpha_{\nu}$ and define

$$
Q_{q}(x)=\frac{1}{2 \pi i} \int \frac{\Gamma(s) \phi(s) x^{o+q}}{c_{q} \Gamma(s+q+1)} d s
$$

AMS Subject Classifications. Primary 1043; Secondary 1040, 1041.
Key Words and Phrases. Arithmetical function, functional equation with gamma factors, Dirichlet series, average order.
${ }^{1}$ Research partially supported by NSF Grant \# GP-7506.

