ON MORSE THEORY AND STATIONARY STATES FOR NONLINEAR WAVE EQUATIONS

BY MELVYN S. BERGER¹

Communicated by J. T. Schwartz, December 1, 1969

The nonlinear equations to be discussed here can be written in the form

(1)
$$\partial^2 u/\partial t^2 = Lu + N(x, u),$$

(1')
$$i \partial u/\partial t = Lu + N(x, u)$$

where L is a second order elliptic formally selfadjoint differential operator acting on complex-valued functions u(t, x) defined on $\mathbb{R}^1 \times \mathbb{R}^3$, and $N(x, u) = f(x, |u|^2)u$ is a complex-valued function jointly continuous in x and u with f(x, r) = o(1) as $|r| \to \infty$. A complexvalued function u(t, x) is called a stationary state of (1) [or (1')] if (a) u(t, x) satisfies (1) [or (1')] on $\mathbb{R}^1 \times \mathbb{R}^3$, and

(b) $u(t, x) = v(x)e^{i\lambda t}$ where λ is some real number and v(x) is a smooth real-valued function defined on \mathbb{R}^3 , tending to 0 exponentially as $|x| \to \infty$ but not identically zero.

In this article we wish to examine the structure and properties of the stationary states of (1) [or (1')] by combining recent results of Morse theory on Hilbert manifolds with concrete estimates for elliptic differential operators defined on R^3 .

1. Statement of basic results. We begin with two affirmative facts concerning the existence of stationary states.

THEOREM 1. Let $L = \Delta - p^2$ (p = const.), $f(x, u) = k(|x|) |u|^{\sigma}$ with $0 < \sigma < 4$ where k(|x|) is a bounded positive continuous function uniformly bounded above zero. Then (1) and (1') have (for each $\lambda^2 < p^2$ in (1) and $\lambda < p^2$ in (1')) a countably infinite number of stationary states $v_N(x, \lambda), N = 0, 1, 2, \cdots$. Each $v_N(x, \lambda)$ has precisely N nodal domains in \mathbb{R}^3 and is nonoscillatory outside some fixed sphere of radius R (independent of N).

THEOREM 2. The $v_N(x, \lambda)$ of Theorem 1 (apart from a constant multiplier) are limits (as $m \to \infty$) of spherically symmetric nondegenerate critical points $v_{Nm}(x, \lambda)$ of index N of the functional $\int_{B_m} k(|x|) |u|^{\sigma} u^2$ on an infinite dimensional Hilbert manifold \mathfrak{M}_m where B_m is a ball

AMS Subject Classifications. Primary 5815; Secondary 3560.

Key Words and Phrases. Morse theory, nonlinear wave equations.

¹ Research partially supported by NSF grant 16578.