IMBEDDINGS, IMMERSIONS, AND COBORDISM OF DIFFERENTIABLE MANIFOLDS

BY RICHARD L. W. BROWN¹

Communicated by P. Emery Thomas, January 29, 1970

1. Introduction. The problem of imbedding a closed differentiable manifold M^n in a euclidean space can be weakened through the notion of (modulo 2) cobordism as follows. Is M^n cobordant to a submanifold of \mathbb{R}^{n+k} ? In this context we can prove an analogue, with improved dimensions, of H. Whitney's theorems [11], [12]. Let $\alpha(n)$ denote the number of ones in the binary expansion of n, and let n > 1.

THEOREM A. Any M^n is cobordant to a manifold N^n that imbeds in $\mathbb{R}^{2n-\alpha(n)+1}$ and immerses in $\mathbb{R}^{2n-\alpha(n)}$.

For $n \neq 3$ this result is best possible as the examples below show. In some cases we can say more if certain Stiefel-Whitney numbers of M^n are zero. Allow the empty set as a representative of the zero cobordism class. (Thus Theorem A holds for all n.)

THEOREM B. (i) If n is even $(n \neq 6)$ and if $\bar{w}_{\alpha(n)} \cdot \bar{w}_{n-\alpha(n)}(M^n) = 0$ then M^n is cobordant to a manifold N^n that imbeds in $\mathbb{R}^{2n-\alpha(n)}$ and immerses in $\mathbb{R}^{2n-\alpha(n)-1}$.

(ii) If $n = 2^k$ or $2^k + 1$ and if $\bar{w}_i \cdot \bar{w}_{n-i}(M^n) = 0$ for $0 \le i \le s \le 3$ then M^n is cobordant to a manifold N^n that imbeds in \mathbb{R}^{2n-s} and immerses in \mathbb{R}^{2n-s-1} .

Let \Re_* denote the modulo 2 cobordism ring, and let MO(k) denote the Thom complex for O(k). There are homomorphisms

 $\Phi(n, k): \pi_{n+k}(MO(k)) \to \mathfrak{N}_n$ and $\Psi(n, k, N): \pi_{n+k+N}(S^N MO(k)) \to \mathfrak{N}_n$.

The image of $\Phi(n, k)$ is the set of cobordism classes that can be represented by submanifolds of \mathbb{R}^{n+k} and hence coker $\Phi(n, k) = 0$ if k > n $-\alpha(n)$ by Theorem A. The image of $\Psi(n, k, N)$ $(N \gg k)$ is the set of cobordism classes that can be represented by manifolds which immerse in \mathbb{R}^{n+k} (see R. Wells [10]) and hence coker $\Psi(n, k, N) = 0$ if $k \ge n - \alpha(n), N \gg k$.

AMS Subject Classifications. Primary 5570, 5710, 5720; Secondary 5545.

Key Words and Phrases. Imbedding differentiable manifolds, immersing differentiable manifolds, unoriented cobordism, unstable homotopy, stable homotopy, Thom complex.

¹ This work is part of the author's thesis done under the supervision of Professor B. Mazur at Harvard University. It was supported by the National Research Council of Canada.