IMBEDDINGS, IMMERSIONS, AND COBORDISM OF DIFFERENTIABLE MANIFOLDS

BY RICHARD L. W. BROWN ${ }^{1}$
Communicated by P. Emery Thomas, January 29, 1970

1. Introduction. The problem of imbedding a closed differentiable manifold M^{n} in a euclidean space can be weakened through the notion of (modulo 2) cobordism as follows. Is M^{n} cobordant to a submanifold of R^{n+k} ? In this context we can prove an analogue, with improved dimensions, of H. Whitney's theorems [11], [12]. Let $\alpha(n)$ denote the number of ones in the binary expansion of n, and let $n>1$.

Theorem A. Any M^{n} is cobordant to a manifold N^{n} that imbeds in $R^{2 n-\alpha(n)+1}$ and immerses in $R^{2 n-\alpha(n)}$.

For $n \neq 3$ this result is best possible as the examples below show. In some cases we can say more if certain Stiefel-Whitney numbers of M^{n} are zero. Allow the empty set as a representative of the zero cobordism class. (Thus Theorem A holds for all n.)

Theorem B. (i) If n is even $(n \neq 6)$ and if $\bar{w}_{\alpha(n)} \cdot \bar{w}_{n-\alpha(n)}\left(M^{n}\right)=0$ then M^{n} is cobordant to a manifold N^{n} that imbeds in $R^{2 n-\alpha(n)}$ and immerses in $R^{2 n-\alpha(n)-1}$.
(ii) If $n=2^{k}$ or $2^{k}+1$ and if $\bar{w}_{i} \cdot \bar{w}_{n-i}\left(M^{n}\right)=0$ for $0 \leqq i \leqq s \leqq 3$ then M^{n} is cobordant to a manifold N^{n} that imbeds in $R^{2 n-8}$ and immerses in $\boldsymbol{R}^{2 n-s-1}$.

Let \mathfrak{N}_{*} denote the modulo 2 cobordism ring, and let $M O(k)$ denote the Thom complex for $O(k)$. There are homomorphisms
$\Phi(n, k): \pi_{n+k}(M O(k)) \rightarrow \mathfrak{N}_{n} \quad$ and $\quad \Psi(n, k, N): \pi_{n+k+N}\left(S^{N} M O(k)\right) \rightarrow \mathfrak{N}_{n}$.
The image of $\Phi(n, k)$ is the set of cobordism classes that can be represented by submanifolds of R^{n+k} and hence coker $\Phi(n, k)=0$ if $k>n$ $-\alpha(n)$ by Theorem A. The image of $\Psi(n, k, N)(N \gg k)$ is the set of cobordism classes that can be represented by manifolds which immerse in R^{n+k} (see R. Wells [10]) and hence coker $\Psi(n, k, N)=0$ if $k \geqq n-\alpha(n), N \gg k$.

[^0]
[^0]: AMS Subject Classifications. Primary 5570, 5710, 5720; Secondary 5545.
 Key Words and Phrases. Imbedding differentiable manifolds, immersing differentiable manifolds, unoriented cobordism, unstable homotopy, stable homotopy, Thom complex.

 1 This work is part of the author's thesis done under the supervision of Professor B. Mazur at Harvard University. It was supported by the National Research Council of Canada.

