A SELF-UNIVERSAL CRUMPLED CUBE WHICH IS NOT UNIVERSAL

BY CHARLES D. BASS¹ AND ROBERT J. DAVERMAN²

Communicated by Steve Armentrout, January 23, 1970

C. E. Burgess and J. W. Cannon $[2, \S10]$ have asked whether each self-universal crumpled cube is universal. In this note we give a negative answer to their question by showing that the familiar solid Alexander horned sphere K is not universal. Casler has shown that K is self-universal [3].

A crumpled cube C is a space homeomorphic to the union of a 2sphere S topologically embedded in the 3-sphere S³ and one of its complementary domains. The boundary of C, denoted Bd C, is the image of S under the homeomorphism. A sewing h of two crumpled cubes C and C^{*} is a homeomorphism of Bd C to Bd C^{*}. The space $C \bigcup_h C^*$ given by a sewing h is the identification space obtained from the (disjoint) union of C and C^{*} by identifying each point p in Bd C with h(p) in Bd C^{*}.

A crumpled cube C is *universal* if, for each crumpled cube C* and each sewing h of C and C*, the space $C \cup_h C^*$ is topologically equivalent to S³. Similarly, a crumpled cube C is *self-universal* if $C \cup_f C = S^3$ for each sewing f of C to itself.

1. A bad sewing. In order to define the desired sewing of the solid Alexander horned sphere K to another crumpled cube K^* , we describe an upper semicontinuous decomposition of S^* into points and almost tame arcs.

Let H_1 and H_2 denote the upper and lower half spaces of E^3 , and Pthe xy-plane. Let A_0 denote a solid double torus embedded in E^3 as shown in Figure 1 such that A_0 intersects P in two disks D_1 and D_2 . Letting T_1 and T_2 denote solid double tori embedded in A_0 as shown in Figure 1, we define A_1 as $T_1 \cup T_2$. Assuming sets $A_0, A_1, \cdots, A_{n-1}$ have been defined, we let A_n be the union of 2^n solid double tori contained in A_{n-1} such that each double torus T of A_{n-1} contains exactly two components of A_n , which are embedded in T just as T_1 and T_2 are embedded in A_0 .

AMS Subject Classifications. Primary 5478; Secondary 5701.

Key Words and Phrases. Crumpled cube, sewing of crumpled cubes, universal crumpled cube, self-universal crumpled cube, upper semicontinuous decomposition, tame arcs, slicing homeomorphisms.

¹ Supported by a NASA Traineeship.

³ Partially supported by NSF Grant GP 8888.